QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#731560 | #4854. Virus | crimson231 | WA | 0ms | 4308kb | C++23 | 16.2kb | 2024-11-10 09:03:19 | 2024-11-10 09:03:19 |
Judging History
answer
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cassert>
#include <vector>
#include <queue>
#include <deque>
#include <tuple>
typedef long long ll;
//typedef long double ld;
typedef double ld;
typedef std::pair<int, int> pi;
typedef std::vector<int> Vint;
typedef std::vector<ld> Vld;
const ld INF = 1e17;
const ld TOL = 1e-7;
const ld EPS = 1e-6;
const ld PI = acos(-1);
const int LEN = 1e3;
inline int sign(const ld& x) { return x < -TOL ? -1 : x > TOL; }
inline bool zero(const ld& x) { return !sign(x); }
inline ll sq(int x) { return (ll)x * x; }
inline ld norm(ld th) {
while (th < 0) th += 2 * PI;
while (sign(th - 2 * PI) >= 0) th -= 2 * PI;
return th;
}
int gcd(int a, int b) { while (b) { int tmp = a % b; a = b; b = tmp; } return a; }
int gcd(int a, int b, int c) { int x = gcd(a, b); return gcd(x, c); }
int gcd(int a, int b, int c, int d) { a = std::abs(a); b = std::abs(b); c = std::abs(c); d = std::abs(d); int x = gcd(a, b, c); return gcd(x, c); }
int N, M, T, Q;
ld sc[4];
struct Pos {
ld x, y;
Pos(ld X = 0, ld Y = 0) : x(X), y(Y) {}
bool operator == (const Pos& p) const { return zero(x - p.x) && zero(y - p.y); }
bool operator != (const Pos& p) const { return !zero(x - p.x) || !zero(y - p.y); }
bool operator < (const Pos& p) const { return zero(x - p.x) ? y < p.y : x < p.x; }
bool operator <= (const Pos& p) const { return *this < p || *this == p; }
Pos operator + (const Pos& p) const { return { x + p.x, y + p.y }; }
Pos operator - (const Pos& p) const { return { x - p.x, y - p.y }; }
Pos operator * (const ld& scalar) const { return { x * scalar, y * scalar }; }
Pos operator / (const ld& scalar) const { return { x / scalar, y / scalar }; }
ld operator * (const Pos& p) const { return x * p.x + y * p.y; }
ld operator / (const Pos& p) const { return x * p.y - y * p.x; }
Pos operator ^ (const Pos& p) const { return { x * p.x, y * p.y }; }
Pos& operator += (const Pos& p) { x += p.x; y += p.y; return *this; }
Pos& operator -= (const Pos& p) { x -= p.x; y -= p.y; return *this; }
Pos& operator *= (const ld& scale) { x *= scale; y *= scale; return *this; }
Pos& operator /= (const ld& scale) { x /= scale; y /= scale; return *this; }
Pos operator - () const { return { -x, -y }; }
Pos operator ~ () const { return { -y, x }; }
Pos operator ! () const { return { y, x }; }
ld xy() const { return x * y; }
Pos rot(ld the) { return { x * cos(the) - y * sin(the), x * sin(the) + y * cos(the) }; }
ld Euc() const { return x * x + y * y; }
ld mag() const { return sqrt(Euc()); }
Pos unit() const { return *this / mag(); }
ld rad() const { return atan2(y, x); }
friend ld rad(const Pos& p1, const Pos& p2) { return atan2l(p1 / p2, p1 * p2); }
int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
friend bool cmpq(const Pos& a, const Pos& b) { return (a.quad() != b.quad()) ? a.quad() < b.quad() : a / b > 0; }
bool close(const Pos& p) const { return zero((*this - p).Euc()); }
friend std::istream& operator >> (std::istream& is, Pos& p) { is >> p.x >> p.y; return is; }
friend std::ostream& operator << (std::ostream& os, const Pos& p) { os << p.x << " " << p.y; return os; }
}; const Pos O = { 0, 0 };
typedef std::vector<Pos> Polygon;
ld cross(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) / (d3 - d2); }
ld cross(const Pos& d1, const Pos& d2, const Pos& d3, const Pos& d4) { return (d2 - d1) / (d4 - d3); }
int ccw(const Pos& d1, const Pos& d2, const Pos& d3) { return sign(cross(d1, d2, d3)); }
ld dot(const Pos& d1, const Pos& d2, const Pos& d3) { return (d2 - d1) * (d3 - d2); }
ld dot(const Pos& d1, const Pos& d2, const Pos& d3, const Pos& d4) { return (d2 - d1) * (d4 - d3); }
bool on_seg_strong(const Pos& d1, const Pos& d2, const Pos& d3) { return !ccw(d1, d2, d3) && sign(dot(d1, d3, d2)) >= 0; }
bool on_seg_weak(const Pos& d1, const Pos& d2, const Pos& d3) { return !ccw(d1, d2, d3) && sign(dot(d1, d3, d2)) > 0; }
ld area(const Polygon& H) {
ld ret = 0;
int sz = H.size();
for (int i = 0; i < sz; i++) ret += H[i] / H[(i + 1) % sz];
return ret * .5;
}
struct Linear {//ps[0] -> ps[1]
Pos ps[2];
Pos dir_;
Pos& operator[](int i) { return ps[i]; }
Pos dir() const { return dir_; }
Linear(Pos a = Pos(0, 0), Pos b = Pos(0, 0)) {
ps[0] = a;
ps[1] = b;
dir_ = (ps[1] - ps[0]).unit();
}
bool include(const Pos& p) const { return sign(dir_ / (p - ps[0])) > 0; }
friend bool parallel(const Linear& l0, const Linear& l1) { return zero(l0.dir() / l1.dir()); }
friend bool same_dir(const Linear& l0, const Linear& l1) { return parallel(l0, l1) && l0.dir() * l1.dir() > 0; }
bool operator < (const Linear& l0) const {
if (same_dir(*this, l0)) return l0.include(ps[0]);
else return cmpq(this->dir(), l0.dir());
}
};
typedef std::vector<Linear> Planes;
ld dist(const Pos& d1, const Pos& d2, const Pos& t) { return cross(d1, d2, t) / (d1 - d2).mag(); }
Pos intersection(const Pos& p1, const Pos& p2, const Pos& q1, const Pos& q2) { ld a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2); return (p1 * a2 + p2 * a1) / (a1 + a2); }
Pos projection(const Pos& s1, const Pos& s2, const Pos& p) { return intersection(s1, s2, p, p + ~(s2 - s1)); }
Pos intersection(Linear& l1, Linear& l2) { return intersection(l1[0], l1[1], l2[0], l2[1]); }
std::vector<Pos> half_plane_intersection(std::vector<Linear>& HP) {
auto check = [&](Linear& u, Linear& v, Linear& w) -> bool {
return w.include(intersection(u, v));
};
std::sort(HP.begin(), HP.end());
std::deque<Linear> dq;
int sz = HP.size();
for (int i = 0; i < sz; ++i) {
if (i && same_dir(HP[i], HP[(i - 1) % sz])) continue;
while (dq.size() > 1 && !check(dq[dq.size() - 2], dq[dq.size() - 1], HP[i])) dq.pop_back();
while (dq.size() > 1 && !check(dq[1], dq[0], HP[i])) dq.pop_front();
dq.push_back(HP[i]);
}
while (dq.size() > 2 && !check(dq[dq.size() - 2], dq[dq.size() - 1], dq[0])) dq.pop_back();
while (dq.size() > 2 && !check(dq[1], dq[0], dq[dq.size() - 1])) dq.pop_front();
sz = dq.size();
if (sz < 3) return {};
std::vector<Pos> HPI;
for (int i = 0; i < sz; ++i) HPI.push_back(intersection(dq[i], dq[(i + 1) % sz]));
return HPI;
}
Planes make_hp(const Polygon& H) {
Planes V;
int sz = H.size();
for (int i = 0; i < sz; i++) V.push_back(Linear(H[i], H[(i + 1) % sz]));
return V;
}
Pos centroid(const Polygon& H) {
Pos cen = Pos(0, 0);
ld A = 0;
int sz = H.size();
for (int i = 0; i < sz; i++) {
ld a = H[i] / H[(i + 1) % sz];
cen += (H[i] + H[(i + 1) % sz]) * a;
A += a;
}
A *= .5;
cen /= 6;
if (!zero(A)) cen /= A;
return cen;
}
struct Pos3D {
ld x, y, z;
Pos3D(ld X = 0, ld Y = 0, ld Z = 0) : x(X), y(Y), z(Z) {}
bool operator == (const Pos3D& p) const { return zero(x - p.x) && zero(y - p.y) && zero(z - p.z); }
bool operator != (const Pos3D& p) const { return !zero(x - p.x) || !zero(y - p.y) || !zero(z - p.z); }
bool operator < (const Pos3D& p) const { return zero(x - p.x) ? zero(y - p.y) ? z < p.z : y < p.y : x < p.x; }
ld operator * (const Pos3D& p) const { return x * p.x + y * p.y + z * p.z; }
Pos3D operator / (const Pos3D& p) const {
Pos3D ret;
ret.x = y * p.z - z * p.y;
ret.y = z * p.x - x * p.z;
ret.z = x * p.y - y * p.x;
return ret;
}
Pos3D operator + (const Pos3D& p) const { return { x + p.x, y + p.y, z + p.z }; }
Pos3D operator - (const Pos3D& p) const { return { x - p.x, y - p.y, z - p.z }; }
Pos3D& operator += (const Pos3D& p) { x += p.x; y += p.y; z += p.z; return *this; }
Pos3D& operator -= (const Pos3D& p) { x -= p.x; y -= p.y; z -= p.z; return *this; }
Pos3D operator * (const ld& n) const { return { x * n, y * n, z * n }; }
Pos3D operator / (const ld& n) const { return { x / n, y / n, z / n }; }
Pos3D& operator *= (const ld& n) { x * n; y * n; z * n; return *this; }
ld Euc() const { return x * x + y * y + z * z; }
ld mag() const { return sqrtl(Euc()); }
Pos3D unit() const { return *this / mag(); }
Pos3D norm(const Pos3D& p) const { return (*this / p).unit(); }
friend std::istream& operator >> (std::istream& is, Pos3D& p) { is >> p.x >> p.y >> p.z; return is; }
friend std::ostream& operator << (std::ostream& os, const Pos3D& p) { os << p.x << " " << p.y << " " << p.z; return os; }
};
const Pos3D O3D = { 0, 0, 0 };
const Pos3D X_axis = { 1, 0, 0 };
const Pos3D Y_axis = { 0, 1, 0 };
const Pos3D Z_axis = { 0, 0, 1 };
const Pos3D INVAL3D = { INF, INF, INF };
typedef std::vector<Pos3D> Polygon3D;
typedef std::vector<Polygon3D> Polyhedron;
struct Line3D {
Pos3D dir, p0;
Line3D(Pos3D DIR = Pos3D(0, 0, 0), Pos3D P0 = Pos3D(0, 0, 0)) : dir(DIR), p0(P0) {}
};
struct Plane {
ld a, b, c, d;
Plane(ld A = 0, ld B = 0, ld C = 0, ld D = 0) : a(A), b(B), c(C), d(D) {}
Plane& operator *= (const ld& s) { a *= s; b *= s; c *= s; d *= s; return *this; }
Pos3D norm() const { return Pos3D(a, b, c); };
Plane& operator += (const ld& n) { d += n; return *this; }
friend std::istream& operator >> (std::istream& is, Plane& f) { is >> f.a >> f.b >> f.c >> f.d; return is; }
friend std::ostream& operator << (std::ostream& os, const Plane& f) { os << f.a << " " << f.b << " " << f.c << " " << f.d; return os; }
} knife;
typedef std::vector<Plane> Surfaces;
int above(const Plane& S, const Pos3D& p) { return sign(p * S.norm() + S.d); }
//ld randTOL() {
// ld rand01 = rand() / (ld)RAND_MAX;
// ld err = (rand01 - .5) * TOL;
// return err;
//}
//Pos3D add_noise(const Pos3D& p) {
// ld rand01 = rand() / (ld)RAND_MAX;
// ld err = (rand01 - .5) * TOL;
// return p + Pos3D(randTOL(), randTOL(), randTOL());
//}
void update_sc(const Plane& p) {
ld angle1 = -atan2(p.b, p.a);
ld dx = sqrtl(p.a * p.a + p.b * p.b);
ld angle2 = -atan2(dx, p.c);
sc[0] = sin(angle1);
sc[1] = cos(angle1);
sc[2] = sin(angle2);
sc[3] = cos(angle2);
return;
}
Pos3D rotate(const Pos3D& p) {
ld x = p.x * sc[1] - p.y * sc[0], y = p.x * sc[0] + p.y * sc[1], z = p.z;
return Pos3D(z * sc[2] + x * sc[3], y, z * sc[3] - x * sc[2]);
}
Pos convert(Pos3D p, const Pos3D& v) {
//std::cout << "pppp1:: " << p << "\n";
//std::cout << "vvvv1:: " << v << "\n";
p -= v;
//std::cout << "pppp2:: " << p << "\n";
p = rotate(p);
//std::cout << "pppp3:: " << p << "\n";
return Pos(p.x, p.y);
}
Pos3D recover(const Pos& p2D, const Pos3D& v) {
ld x = p2D.x * -sc[3];
ld y = p2D.y;
ld z = p2D.x * sc[2];
//std::cout << "recover:: sc[2]:: " << sc[2] << "\n";
//std::cout << "recover:: sc[3]:: " << sc[3] << "\n";
//std::cout << "recover:: x:: " << x << "\n";
//std::cout << "recover:: y:: " << y << "\n";
//std::cout << "recover:: z:: " << z << "\n";
Pos3D p = Pos3D(x * -sc[1] + y * sc[0], x * sc[0] + y * sc[1], z);
//std::cout << "recover:: p:: " << p << "\n";
return p + v;
}
typedef std::vector<Pos3D> Polygon3D;
typedef std::vector<Polygon3D> Polyhedron;
Pos3D cross(const Pos3D& d1, const Pos3D& d2, const Pos3D& d3) { return (d2 - d1) / (d3 - d2); }
ld dot(const Pos3D& d1, const Pos3D& d2, const Pos3D& d3) { return (d2 - d1) * (d3 - d2); }
int ccw(const Pos3D& d1, const Pos3D& d2, const Pos3D& d3, const Pos3D& norm) { return sign(cross(d1, d2, d3) * norm); }
bool on_seg_strong(const Pos3D& d1, const Pos3D& d2, const Pos3D& d3) { return zero(cross(d1, d2, d3).mag()) && sign(dot(d1, d3, d2)) >= 0; }
bool on_seg_weak(const Pos3D& d1, const Pos3D& d2, const Pos3D& d3) { return zero(cross(d1, d2, d3).mag()) && sign(dot(d1, d3, d2)) > 0; }
Line3D L(const Pos3D& p1, const Pos3D& p2) { return { p2 - p1, p1 }; }
ld dist(const Plane& s, const Pos3D& p) { return (s.norm() * p + s.d) / s.norm().mag(); }
Pos3D offset(const Plane& s, const Pos3D& p) { ld d = dist(s, p); return s.norm().unit() * -d; }
Pos3D intersection(const Plane& S, const Line3D& l) {
ld det = S.norm() * l.dir;
if (zero(det)) return { INF, INF, INF };
ld t = -((S.norm() * l.p0 + S.d) / det);
//std::cout << "intersection::\n";
//std::cout << "t:: " << t << "\n";
//std::cout << "S:: " << S << "\n";
//std::cout << "l:: dir:: " << l.dir << " p0:: " << l.p0 << "\n";
//std::cout << "inx:: " << l.p0 + (l.dir * t) << "\n";
//std::cout << "intersection::\n";
return l.p0 + (l.dir * t);
}
Pos3D intersection(const Plane& S, const Pos3D& p1, const Pos3D& p2, const bool& f = 0) {
Line3D l = L(p1, p2);
Pos3D inx = intersection(S, l);
if (f && !on_seg_strong(p1, p2, inx)) return { INF, INF, INF };
return inx;
}
int intersection(const Plane& p1, const Plane& p2, Line3D& l) {
Pos3D n1 = p1.norm();
Pos3D n2 = p2.norm();
Pos3D dir = n2 / n1;
dir = dir.unit();
if (zero(dir.mag())) {
ld f = n1 * n2;
ld d1 = dist(p1, O3D);
ld d2 = dist(p2, O3D);
//ld d1 = p1.d;
//ld d2 = p2.d;
//std::cout << "d1:: " << d1 << " d2:: " << d2 << "\n";
if (sign(f) > 0) return sign(d2 - d1) >= 0 ? 0 : -1;
else {
//if (zero(d1)) return sign(d2) >= 0 ? 0 : -1;
//if (zero(d2)) return sign(d1) >= 0 ? 0 : -1;
//if (sign(d1) < 0 && sign(d2) < 0) return -2;
//if (sign(d1) > 0 && sign(d2) > 0) return 0;
return sign(d2 + d1) >= 0 ? 0 : -2;
}
}
Pos3D q1 = intersection(p1, Line3D(n1, O3D));
Pos3D v1 = n1 / dir;
Pos3D p0 = intersection(p2, Line3D(v1, q1));
//std::cout << "p1:: " << p1 << "\n";
//std::cout << "p2:: " << p2 << "\n";
//std::cout << "q1:: " << q1 << "\n";
//std::cout << "v1:: " << v1 << "\n";
//std::cout << "dir:: " << dir << "\n";
//std::cout << "p0:: " << p0 << "\n";
l = Line3D(dir, p0);
return 1;
}
void solve() {
std::cin.tie(0)->sync_with_stdio(0);
std::cout.tie(0);
std::cout << std::fixed;
std::cout.precision(9);
std::cin >> N;
Surfaces S(N);
for (Plane& p : S) {
int a, b, c, d;
std::cin >> a >> b >> c >> d;
int x = gcd(a, b, c, d);
a /= x; b /= x; c /= x; d /= x;
a *= -1; b *= -1; c *= -1;// d *= -1;
p = Plane(a, b, c, d);
p += EPS;
}
ld bnd = 1e7;
Pos p1 = Pos(-bnd, -bnd),
p2 = Pos(bnd, -bnd),
p3 = Pos(bnd, bnd),
p4 = Pos(-bnd, bnd);
Planes B = {
Linear(p1, p2),
Linear(p2, p3),
Linear(p3, p4),
Linear(p4, p1)
};
Pos3D q;
bool f0 = 0;
for (int i = 0; i < N; i++) {
//std::cout << "\nLOOP_START:::\n";
//std::cout << "LOOP_START:::\n";
//std::cout << "LOOP_START:::\n";
update_sc(S[i]);
Pos3D v = offset(S[i], O3D);
//std::cout << "dist:: " << dist(S[i], O3D) << "\n";
//std::cout << "v:: " << v << "\n";
//Pos3D w = { 2, 2, -2 };
//Pos w1 = convert(w, v);
//std::cout << w1 << "\n";
//std::cout << recover(w1, v) << " recover:: { 2, 2, -2 } \n";
Line3D l;
int f = 1;
Planes hp = B;
for (int j = 0; j < N; j++) {
if (i == j) continue;
f = intersection(S[i], S[j], l);
//std::cout << f << " ::f ::\n";
//std::cout << S[i].norm() * S[j].norm() << " ::n1 * n2 ::\n";
if (f == -2) { std::cout << "banana\n"; return; }
if (f < 0) break;
if (f == 0) continue;
//std::cout << "S[" << j << "]:: " << S[j] << "\n";
//std::cout << "l.p0:: " << l.p0 << "\nl.dir:: " << l.dir << "\n";
//std::cout << "dist:: i:: " << dist(S[i], l.p0) << "\n";
//std::cout << "dist:: j:: " << dist(S[j], l.p0) << "\n";
//std::cout << "dot:: i:: " << S[i].norm() * l.dir << "\n";
//std::cout << "dot:: j:: " << S[j].norm() * l.dir << "\n";
//std::cout << "mag:: l:: " << sign(l.dir.mag()) << "\n";
//std::cout << "v:: " << v << "\n";
Pos s = convert(l.p0, v);
Pos e = convert(l.p0 + l.dir, v);
//std::cout << "s:: " << s << "\ne:: " << e << "\n";
//std::cout << "vec:: " << e - s << "\n";
hp.push_back(Linear(s, e));
}
if (f == -1) continue;
//std::cout << "hpi\n";
Polygon hpi = half_plane_intersection(hp);
if (!hpi.size()) continue;
//std::cout << "hpii\n";
//std::cout << recover(hpi[0], S[i], v) << "\n";
//std::cout << hpi[0] << "\n";
//std::cout << "hpi:: \n";
//for (const Pos& p : hpi) std::cout << p << "\n";
//std::cout << "hpi:: \n";
Pos cen = centroid(hpi);
q = recover(cen, v);
f0 = 1;
break;
//return;
}
if (f0) {
std::cout << q << "\n";
//q = Pos3D(3.0, 5.0, 2.0);
//q = Pos3D(1.5, 2.0, -5.0);
for (const Plane& p : S) {
std::cout << "dist:: " << dist(p, q) << "\n";
}
}
else std::cout << "banana\n";
//q = Pos3D(2, 0, 2);
//for (const Plane& p : S) {
//std::cout << "dist:: " << dist(p, q) << "\n";
//}
return;
}
int main() { solve(); return 0; }//boj19508
詳細信息
Test #1:
score: 0
Wrong Answer
time: 0ms
memory: 4308kb
input:
10 344 -792 -688 515 -271 653 -152 715 -320 -275 -324 -283 -182 142 -387 -584 75 406 -424 868 -139 -647 54 150 -981 -401 -734 -202 -858 555 -884 954 -94 891 -557 457 -216 -281 -743 -916
output:
7306288.606684352 -92948.908225376 3760142.883741144 dist:: 0.000000000 dist:: 3612282.525762050 dist:: 6636994.149403220 dist:: 6209505.840545546 dist:: 1831787.693604419 dist:: 1133179.628148495 dist:: 7671807.551230229 dist:: 7137806.587215410 dist:: 2714772.095920288 dist:: 5279154.592092675
result:
wrong output format Extra information in the output file