QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#730845#9571. Border Jump 2ucup-team4435WA 1ms3832kbC++2316.5kb2024-11-09 21:57:352024-11-09 21:57:35

Judging History

你现在查看的是最新测评结果

  • [2024-11-09 21:57:35]
  • 评测
  • 测评结果:WA
  • 用时:1ms
  • 内存:3832kb
  • [2024-11-09 21:57:35]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using ld = long double;

#define all(a) begin(a), end(a)
#define len(a) int((a).size())

// source: https://judge.yosupo.jp/submission/42086
#include <algorithm>
#include <cassert>
#include <cstring>
#include <functional>
#include <initializer_list>
#include <iostream>
#include <memory>
#include <queue>
#include <random>
#include <vector>

void SA_IS(const int *s, int *SA, int n, int K) {
    // s 为字符串数组[0..n-1] 必须保证 s[n-1]=0 且为最小值
    // SA 为存储后缀数组[0..n-1]
    // n 为字符串长度
    // K 为值域

    bool *t = new bool[n]; // 类型数组
    int *bkt = new int[K]; // 桶
    int *bkt_l = new int[K];
    int *bkt_r = new int[K];
    int n1 = 0; // LMS-后缀的数量
    int *p1;    //按出现顺序存储所有 LMS-后缀的索引

#define is_S_type(x) (t[x])
#define is_L_type(x) (!t[x])
#define is_LMS_type(x) (is_S_type(x) && x != 0 && is_L_type(x - 1))

    // 预处理每一个后缀的类型
    t[n - 1] = true; // 0 为 S-型后缀且为 LMS-型后缀
    for (int i = n - 2; i >= 0; --i) {
        t[i] = (s[i] < s[i + 1] || (is_S_type(i + 1) && s[i] == s[i + 1]));
        n1 += is_LMS_type(i + 1); // s[0] 必然不是 LMS-型后缀,不会影响
    }

    // 预处理桶的边界
    for (int i = 0; i != K; ++i) bkt[i] = 0;
    for (int i = 0; i != n; ++i) ++bkt[s[i]];
    for (int i = 0, sum = 0; i != K; ++i) sum += bkt[i], bkt_r[i] = sum, bkt_l[i] = sum - bkt[i];

#define indecud_sort()                                                                             \
  do {                                                                                             \
    for (int i = 0; i != K; ++i) bkt[i] = bkt_l[i];                                                \
    for (int i = 0, j; i != n; ++i)                                                                \
      if ((j = SA[i] - 1) >= 0 && is_L_type(j)) SA[bkt[s[j]]++] = j;                               \
    for (int i = 0; i != K; ++i) bkt[i] = bkt_r[i];                                                \
    for (int i = n - 1, j; i >= 0; --i)                                                            \
      if ((j = SA[i] - 1) >= 0 && is_S_type(j)) SA[--bkt[s[j]]] = j;                               \
  } while (0)

    // 将所有 LMS-后缀放入 SA 对应桶的末尾并诱导排序
    p1 = new int[n1];
    for (int i = 0, j = 0; i != n; ++i) {
        SA[i] = -1;
        if (is_LMS_type(i)) p1[j++] = i;
    }
    for (int i = 0; i != K; ++i) bkt[i] = bkt_r[i];
    for (int i = n1 - 1; i >= 0; --i) SA[--bkt[s[p1[i]]]] = p1[i];
    indecud_sort();

    int *s1 = new int[n1];  // 新的字符串
    int *SA1 = new int[n1]; // 存储新的字符串排的后缀数组
    for (int i = 0, j = 0; i != n; ++i)
        if (is_LMS_type(SA[i])) SA1[j++] = SA[i]; // 存储 LMS-子串的相对顺序
    int name = 0;
    // 对所有 LMS-子串命名
    for (int i = 0, prev = -1; i != n1; ++i) {
        int pos = SA1[i];
        for (int j = 0;; ++j) // 无需设置范围,因为 s[n-1]=0 为最小值且不会出现在其余位置
            if (prev == -1 || s[pos + j] != s[prev + j] || is_S_type(pos + j) != is_S_type(prev + j)) {
                prev = pos, ++name;
                break;
            } else if (j != 0 && (is_LMS_type(pos + j) || is_LMS_type(prev + j))) // 到末尾了停止比较
                break;
        SA[pos] = name - 1; // 利用 SA 暂时存储新字符串的 name
    }
    for (int i = 0; i != n1; ++i) s1[i] = SA[p1[i]];

    if (name != n1)
        SA_IS(s1, SA1, n1, name);
    else
        for (int i = 0; i != n1; ++i) SA1[s1[i]] = i;

    for (int i = 0; i != K; ++i) bkt[i] = bkt_r[i];
    for (int i = 0; i != n; ++i) SA[i] = -1;
    for (int i = n1 - 1; i >= 0; --i) SA[--bkt[s[p1[SA1[i]]]]] = p1[SA1[i]];
    indecud_sort();

    delete[] SA1;
    delete[] s1;
    delete[] p1;
    delete[] bkt_r;
    delete[] bkt_l;
    delete[] bkt;
    delete[] t;

#undef is_S_type
#undef is_L_type
#undef is_LMS_type
#undef indecud_sort
}

std::vector<int> get_sa(const std::string &s) {
    int len = s.size();
    std::vector<int> SA(len + 1), s_cpy(len + 1);
    for (int i = 0; i != len; ++i) s_cpy[i] = s[i];
    s_cpy.back() = 0;
    SA_IS(s_cpy.data(), SA.data(), len + 1, 128);
    return std::vector<int>(SA.begin() + 1, SA.end());
}

struct suffix_array {
    std::vector<int> order, suffix_position, lcp;

    template<typename T>
    suffix_array(T str = T()) {
        int n = str.size() + 1;
        order = get_sa(str);
        order.insert(order.begin(), n - 1);

        suffix_position.resize(n);
        for (int i = 0; i < n; i++) {
            suffix_position[order[i]] = i;
        }

        lcp.resize(n);
        int current_lcp = 0;
        for (int suffix = 0; suffix < n - 1; suffix++, current_lcp = current_lcp == 0 ? 0 : current_lcp - 1) {
            int previous_suffix = order[suffix_position[suffix] - 1];
            while (str[suffix + current_lcp] == str[previous_suffix + current_lcp])
                current_lcp++;

            lcp[suffix_position[suffix]] = current_lcp;
        }
    }
};

/*
 * Zero based.
 * Type T must have operator += T.
 * Type T must have default constructor, which sets neutral value.
 * Operation += must be commutative.
 * For segment query type T must have operator -= T.
 */
template<typename T>
struct binary_indexed_tree {
    std::vector<T> bit;

    // Fills the array with default values.
    binary_indexed_tree(int n = 0) : bit(n + 1) {}

    int size() const {
        return int(bit.size()) - 1;
    }

    // Adds delta at the position pos.
    void add(int pos, T delta) {
        for (pos++; pos < static_cast<int>(bit.size()); pos += pos & -pos) {
            bit[pos] += delta;
        }
    }

    // Returns the sum on the segment [0, pref].
    T query(int pref) {
        T sum = T();
        for (pref++; pref > 0; pref -= pref & -pref) {
            sum += bit[pref];
        }
        return sum;
    }

    // Returns the sum on the interval [l, r).
    T query(int l, int r) {
        if (r <= l) {
            return T();
        }
        T res = query(r - 1);
        res -= query(l - 1);
        return res;
    }
};

/*
 * Zero based.
 * Works for operations Op, such that Op(S) = Op(S \cup x), where x in S (like min, max, gcd...).
 * Operation must be commutative.
 */
template<typename T, typename merge_t = std::function<T(T, T)>>
class sparse_table {
private:
    std::vector<std::vector<T>> sparse;
    const merge_t merge;

public:
    sparse_table(const merge_t &merge) : merge(merge) {}

    sparse_table(const std::vector<T> &a, const merge_t &merge) : merge(merge) {
        const int n = a.size(), lg = std::__lg(std::max(1, n));
        sparse.reserve(lg + 1);
        sparse.push_back(a);
        for (int level = 1; level <= lg; level++) {
            sparse.push_back(std::vector<T>(n - (1 << level) + 1));
            for (int i = 0; i < static_cast<int>(sparse[level].size()); i++) {
                sparse[level][i] = merge(sparse[level - 1][i], sparse[level - 1][i + (1 << (level - 1))]);
            }
        }
    }

    sparse_table(const sparse_table &sparse) : sparse(sparse.sparse), merge(sparse.merge) {}

    sparse_table& operator=(const sparse_table<T, merge_t> &another) {
        sparse = another.sparse;
        return *this;
    }

    // Returns result of merging elements on the interval [l, r).
    T query(int l, int r) const {
        assert(l < r);
        const int level = std::__lg(r - l);
        return merge(sparse[level][l], sparse[level][r - (1 << level)]);
    }
};

/*
 * Node must have default constructor.
 * Node must have static function merge.
 * Node must have .push and .clear_after_push methods.
*/

template<typename node>
class segtree {
private:
    void build(int v, int vl, int vr) {
        if (vr - vl <= 1)
            return;

        int vm = (vl + vr) >> 1;
        build(v << 1, vl, vm);
        build(v << 1 | 1, vm, vr);
        tree[v] = node::merge(tree[v << 1], tree[v << 1 | 1]);
    }

    template<typename T>
    void build(int v, int vl, int vr, const std::vector<T> &arr) {
        if (vl == vr)
            return;

        if (vr - vl == 1) {
            tree[v] = node(arr[vl]);
            return;
        }

        int vm = (vl + vr) >> 1;
        build(v << 1, vl, vm, arr);
        build(v << 1 | 1, vm, vr, arr);
        tree[v] = node::merge(tree[v << 1], tree[v << 1 | 1]);
    }

    template<typename... Args>
    void _update(int v, int vl, int vr, int l, int r, Args&&... args) {
        if (r <= vl || vr <= l)
            return;

        if (l <= vl && vr <= r) {
            tree[v].apply(std::forward<Args>(args)..., vl, vr);
            return;
        }

        int vm = (vl + vr) >> 1;
        tree[v].push(tree[v << 1], vl, vm);
        tree[v].push(tree[v << 1 | 1], vm, vr);
        tree[v].clear_after_push();

        _update(v << 1, vl, vm, l, r, std::forward<Args>(args)...);
        _update(v << 1 | 1, vm, vr, l, r, std::forward<Args>(args)...);
        tree[v] = node::merge(tree[v << 1], tree[v << 1 | 1]);
    }

    node _query(int v, int vl, int vr, int l, int r) {
        if (l <= vl && vr <= r)
            return tree[v];

        int vm = (vl + vr) >> 1;
        tree[v].push(tree[v << 1], vl, vm);
        tree[v].push(tree[v << 1 | 1], vm, vr);
        tree[v].clear_after_push();

        if (r <= vm)
            return _query(v << 1, vl, vm, l, r);

        if (vm <= l)
            return _query(v << 1 | 1, vm, vr, l, r);

        return node::merge(_query(v << 1, vl, vm, l, r), _query(v << 1 | 1, vm, vr, l, r));
    }

    template<typename T>
    int _find_first(int v, int vl, int vr, int from, const T &checker) {
        if (vr <= from)
            return n;

        if (from <= vl && !checker(tree[v], vl, vr))
            return n;

        if (vr - vl == 1)
            return vl;

        int vm = (vl + vr) >> 1;
        tree[v].push(tree[v << 1], vl, vm);
        tree[v].push(tree[v << 1 | 1], vm, vr);
        tree[v].clear_after_push();

        int res = _find_first(v << 1, vl, vm, from, checker);
        return res == n ? _find_first(v << 1 | 1, vm, vr, from, checker) : res;
    }

    template<typename T>
    int _find_last(int v, int vl, int vr, int from, const T &checker) {
        if (from <= vl)
            return -1;

        if (vr <= from && !checker(tree[v], vl, vr))
            return -1;

        if (vr - vl == 1)
            return vl;

        int vm = (vl + vr) >> 1;
        tree[v].push(tree[v << 1], vl, vm);
        tree[v].push(tree[v << 1 | 1], vm, vr);
        tree[v].clear_after_push();

        int res = _find_last(v << 1 | 1, vm, vr, from, checker);
        return res == -1 ? _find_last(v << 1, vl, vm, from, checker) : res;
    }

public:
    int n;
    std::vector<node> tree;

    segtree(int n) : n(n), tree(4 * n, node()) {
        build(1, 0, n);
    }

    template<typename T>
    segtree(const std::vector<T> &arr) : n(arr.size()), tree(4 * n) {
        build(1, 0, n, arr);
    }

    int size() const {
        return n;
    }

    template<typename... Args>
    void update(int l, int r, Args&&... args) {
        if (r <= l)
            return;

        _update(1, 0, n, l, r, std::forward<Args>(args)...);
    }

    node query(int l, int r) {
        assert(std::max(0, l) < std::min(n, r)); // or return node() in this case
        return _query(1, 0, n, l, r);
    }

    // Trying to find first true on the interval [from, n).
    // Returns n if not found.
    template<typename T>
    int find_first(int from, const T &checker) {
        return _find_first(1, 0, n, from, checker);
    }

    // Trying to find last true on the interval [0, from).
    // Returns -1 if not found.
    template<typename T>
    int find_last(int from, const T &checker) {
        return _find_last(1, 0, n, from, checker);
    }
};

struct node {
    int mx = -1e9;

    node() {}

    void apply(ll delta, int, int) {
        mx = delta;
    }

    void push(node&, int, int) {}
    void clear_after_push() {}

    static node merge(const node &left, const node &right) {
        node res;
        res.mx = max(left.mx, right.mx);
        return res;
    }
};

void solve(int /* test_num */) {
    string s;
    cin >> s;
    int n = len(s);

    auto t = s + "#";
    auto reversed = s;
    reverse(all(reversed));
    t += reversed;

    suffix_array sa(t);

    auto merge_min = [](int x, int y) {
        return x < y ? x : y;
    };
    sparse_table<int, decltype(merge_min)> sparse(sa.lcp, merge_min);

    vector<int> dp(n, n - 1);
    int ans = 0;

    const int ITS = __lg(n) + 2;
    for (int it = 1; it <= ITS; it++) {
        segtree<node> tree(2 * n + 2);

        int max_r = -1;
        for (int l = 0; l < n; l++) {
            while (max_r < dp[l]) {
                max_r++;
                int pos = sa.suffix_position[n + 1 + (n - 1 - max_r)];
                tree.update(pos, pos + 1, max_r);
            }

            int lb = 0, rb = max_r - l + 1;
            while (rb - lb > 1) {
                int mid = (lb + rb) / 2;

                int pos = sa.suffix_position[l];
                int left;
                {
                    int low = -1, high = pos;
                    while (high - low > 1) {
                        int mid2 = (low + high) / 2;
                        if (sparse.query(mid2 + 1, pos + 1) < mid) {
                            low = mid2;
                        } else {
                            high = mid2;
                        }
                    }
                    left = high;
                }

                int right;
                {
                    int low = pos, high = 2 * n + 2;
                    while (high - low > 1) {
                        int mid2 = (low + high) / 2;
                        if (sparse.query(pos + 1, mid2 + 1) >= mid) {
                            low = mid2;
                        } else {
                            high = mid2;
                        }
                    }
                    right = low;
                }

                if (tree.query(left, right + 1).mx - mid + 1 > l) {
                    lb = mid;
                } else {
                    rb = mid;
                }
            }

            if (lb == 0) {
                dp[l] = -1;
                continue;
            }
            ans = max(ans, it);
            dp[l] = l + lb - 1;
        }
    }

    vector<int> nxt(n + 1, n);
    for (int i = n - 2; i >= 0; i--) {
        if (s[i] != s[i + 1]) {
            nxt[i] = i + 1;
        } else {
            nxt[i] = nxt[i + 1];
        }
    }

    vector<int> prev(n, -1);
    for (int i = 1; i < n; i++) {
        if (s[i] != s[i - 1]) {
            prev[i] = i - 1;
        } else {
            prev[i] = prev[i - 1];
        }
    }

    auto check = [&] (int l, int r) {
        if (l >= r) return;


        bool ok = true;
        for (int d = 0; d <= r - l && ok; d++) {
            ok &= s[l + d] == s[r - d];
        }
        if (!ok) return;

        int length = r - l + 1;
        if (length % 2 == 1) {
            int mid = (l + r) / 2;
            int rr = nxt[mid] - 1;
            int ll = prev[mid] + 1;
            ll = max(ll, mid - (rr - mid));
            rr = min(rr, mid + (mid - ll));
            ans = max(ans, ITS + length / 2 + (rr - ll) / 2);
        } else {
            int mid = (l + r) / 2;
            if (s[mid] != s[mid + 1]) {
                ans = max(ans, ITS + length / 2);
            } else {
                int ll = prev[mid] + 1;
                int rr = nxt[mid] - 1;
                ll = max(ll, mid - (rr - mid - 1));
                rr = min(rr, mid + 1 + (mid - ll));
                ans = max(ans, ITS + length / 2 + (rr - ll + 1) / 2);
            }
        }
    };

    for (int l = 0; l < n; l++) {
        if (dp[l] == -1) {
            continue;
        }

        int r = dp[l];
        check(l, r);
        check(l + 1, r);
        check(l, r - 1);
    }
    cout << ans << '\n';
}

int main() {
    cin.tie(nullptr)->sync_with_stdio(false);

    int tests;
    cin >> tests;
    for (int test_num = 1; test_num <= tests; test_num++) {
        solve(test_num);
    }
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3592kb

input:

3
aaaa
abbaabba
xy

output:

3
4
0

result:

ok 3 number(s): "3 4 0"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3684kb

input:

15
eeee
ooom
bbcb
yyaa
ssdn
wgww
hrhr
exer
hcch
qyyy
lppa
ocvo
orxr
lrjj
pztv

output:

3
2
1
1
1
1
1
1
2
2
1
1
1
1
0

result:

ok 15 numbers

Test #3:

score: 0
Accepted
time: 1ms
memory: 3604kb

input:

52
eeeee
oooom
bbbcb
yyyaa
sssdn
wwgww
hhrhr
eexer
hhcch
qqyyy
llppa
oocvo
oorxr
llrjj
ppztv
tnttt
vnvvn
hthhp
jzjzj
nrnrr
gqgqt
uruyu
cdchd
djdhh
ktkfy
piipp
zaaza
uffuq
bvvvb
hkkkk
pcccj
qccpq
wqqaq
appgg
cxxvg
ewfee
peupe
odfof
kdpkh
zotoz
yzkzz
irtrt
vxyxi
dlood
akrrk
nsbbb
rdjjc
bfexb
uxsex
ise...

output:

4
3
2
2
2
2
1
1
2
2
1
1
1
1
1
2
2
1
2
1
1
1
1
1
1
2
2
2
3
3
2
1
1
1
1
1
1
1
1
2
1
1
1
1
2
2
1
1
1
1
1
0

result:

ok 52 numbers

Test #4:

score: -100
Wrong Answer
time: 1ms
memory: 3832kb

input:

203
eeeeee
ooooom
bbbbcb
yyyyaa
ssssdn
wwwgww
hhhrhr
eeexer
hhhcch
qqqyyy
lllppa
ooocvo
ooorxr
lllrjj
pppztv
ttnttt
vvnvvn
hhthhp
jjzjzj
nnrnrr
ggqgqt
uuruyu
ccdchd
ddjdhh
kktkfy
ppiipp
zzaaza
uuffuq
bbvvvb
hhkkkk
ppcccj
qqccpq
wwqqaq
aappgg
ccxxvg
eewfee
ppeupe
oodfof
kkdpkh
zzotoz
yyzkzz
iirtrt
vv...

output:

6
4
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
3
2
2
3
3
2
1
1
1
1
2
1
1
1
2
1
1
1
1
2
2
1
1
1
1
1
1
3
3
2
3
2
2
1
1
1
1
2
2
2
2
2
1
1
1
1
1
1
2
1
1
1
1
1
1
2
1
2
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
4
4
3
2
2
2
2
1
1
1
1
1
2
1
1
1
2
2
1
1
1
1
1
1
2
1
2
1
1
1
1
1
1
2
1
1
1
1
1
1
1
2
2
2
2
1
2
2
...

result:

wrong answer 1st numbers differ - expected: '5', found: '6'