QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#728280 | #9570. Binary Tree | ucup-team087# | AC ✓ | 427ms | 25388kb | C++23 | 24.9kb | 2024-11-09 14:54:03 | 2024-11-09 14:54:06 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io2.hpp"
#define INT(...) \
int __VA_ARGS__; \
IN(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
IN(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
IN(__VA_ARGS__)
#define CHR(...) \
char __VA_ARGS__; \
IN(__VA_ARGS__)
#define DBL(...) \
long double __VA_ARGS__; \
IN(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void read(int &a) { cin >> a; }
void read(long long &a) { cin >> a; }
void read(char &a) { cin >> a; }
void read(double &a) { cin >> a; }
void read(long double &a) { cin >> a; }
void read(string &a) { cin >> a; }
template <class T, class S>
void read(pair<T, S> &p) {
read(p.first), read(p.second);
}
template <class T>
void read(vector<T> &a) {
for (auto &i: a) read(i);
}
template <class T>
void read(T &a) {
cin >> a;
}
void IN() {}
template <class Head, class... Tail>
void IN(Head &head, Tail &... tail) {
read(head);
IN(tail...);
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &A) {
os << A.fi << " " << A.se;
return os;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &A) {
for (size_t i = 0; i < A.size(); i++) {
if (i) os << " ";
os << A[i];
}
return os;
}
// chatgpt helped me
class CoutInitializer {
public:
CoutInitializer() { std::cout << std::fixed << std::setprecision(15); }
};
static CoutInitializer cout_initializer;
void print() {
cout << "\n";
cout.flush();
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
cout << head;
if (sizeof...(Tail)) cout << " ";
print(forward<Tail>(tail)...);
}
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 2 "library/graph/find_centroid.hpp"
// (v,w) or (v,-1)
template <typename GT>
pair<int, int> find_centroids(GT& G) {
int N = G.N;
vc<int> par(N, -1);
vc<int> V(N);
vc<int> sz(N);
int l = 0, r = 0;
V[r++] = 0;
while (l < r) {
int v = V[l++];
for (auto&& e: G[v])
if (e.to != par[v]) {
par[e.to] = v;
V[r++] = e.to;
}
}
FOR_R(i, N) {
int v = V[i];
sz[v] += 1;
int p = par[v];
if (p != -1) sz[p] += sz[v];
}
int M = N / 2;
auto check = [&](int v) -> bool {
if (N - sz[v] > M) return false;
for (auto&& e: G[v]) {
if (e.to != par[v] && sz[e.to] > M) return false;
}
return true;
};
pair<int, int> ANS = {-1, -1};
FOR(v, N) if (check(v)) {
if (ANS.fi != -1) {
ANS.se = v;
} else {
ANS.fi = v;
}
}
return ANS;
}
#line 3 "library/graph/shortest_path/bfs01.hpp"
template <typename T, typename GT>
pair<vc<T>, vc<int>> bfs01(GT& G, int v) {
assert(G.is_prepared());
int N = G.N;
vc<T> dist(N, infty<T>);
vc<int> par(N, -1);
deque<int> que;
dist[v] = 0;
que.push_front(v);
while (!que.empty()) {
auto v = que.front();
que.pop_front();
for (auto&& e: G[v]) {
if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) {
dist[e.to] = dist[e.frm] + e.cost;
par[e.to] = e.frm;
if (e.cost == 0)
que.push_front(e.to);
else
que.push_back(e.to);
}
}
}
return {dist, par};
}
// 多点スタート。[dist, par, root]
template <typename T, typename GT>
tuple<vc<T>, vc<int>, vc<int>> bfs01(GT& G, vc<int> vs) {
assert(G.is_prepared());
int N = G.N;
vc<T> dist(N, infty<T>);
vc<int> par(N, -1);
vc<int> root(N, -1);
deque<int> que;
for (auto&& v: vs) {
dist[v] = 0;
root[v] = v;
que.push_front(v);
}
while (!que.empty()) {
auto v = que.front();
que.pop_front();
for (auto&& e: G[v]) {
if (dist[e.to] == infty<T> || dist[e.to] > dist[e.frm] + e.cost) {
dist[e.to] = dist[e.frm] + e.cost;
root[e.to] = root[e.frm];
par[e.to] = e.frm;
if (e.cost == 0)
que.push_front(e.to);
else
que.push_back(e.to);
}
}
}
return {dist, par, root};
}
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/graph/tree.hpp"
#line 4 "library/graph/tree.hpp"
// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
using Graph_type = GT;
GT &G;
using WT = typename GT::cost_type;
int N;
vector<int> LID, RID, head, V, parent, VtoE;
vc<int> depth;
vc<WT> depth_weighted;
Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }
void build(int r = 0, bool hld = 1) {
if (r == -1) return; // build を遅延したいとき
N = G.N;
LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
depth.assign(N, -1), depth_weighted.assign(N, 0);
assert(G.is_prepared());
int t1 = 0;
dfs_sz(r, -1, hld);
dfs_hld(r, t1);
}
void dfs_sz(int v, int p, bool hld) {
auto &sz = RID;
parent[v] = p;
depth[v] = (p == -1 ? 0 : depth[p] + 1);
sz[v] = 1;
int l = G.indptr[v], r = G.indptr[v + 1];
auto &csr = G.csr_edges;
// 使う辺があれば先頭にする
for (int i = r - 2; i >= l; --i) {
if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
}
int hld_sz = 0;
for (int i = l; i < r; ++i) {
auto e = csr[i];
if (depth[e.to] != -1) continue;
depth_weighted[e.to] = depth_weighted[v] + e.cost;
VtoE[e.to] = e.id;
dfs_sz(e.to, v, hld);
sz[v] += sz[e.to];
if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
}
}
void dfs_hld(int v, int ×) {
LID[v] = times++;
RID[v] += LID[v];
V[LID[v]] = v;
bool heavy = true;
for (auto &&e: G[v]) {
if (depth[e.to] <= depth[v]) continue;
head[e.to] = (heavy ? head[v] : e.to);
heavy = false;
dfs_hld(e.to, times);
}
}
vc<int> heavy_path_at(int v) {
vc<int> P = {v};
while (1) {
int a = P.back();
for (auto &&e: G[a]) {
if (e.to != parent[a] && head[e.to] == v) {
P.eb(e.to);
break;
}
}
if (P.back() == a) break;
}
return P;
}
int heavy_child(int v) {
int k = LID[v] + 1;
if (k == N) return -1;
int w = V[k];
return (parent[w] == v ? w : -1);
}
int e_to_v(int eid) {
auto e = G.edges[eid];
return (parent[e.frm] == e.to ? e.frm : e.to);
}
int v_to_e(int v) { return VtoE[v]; }
int get_eid(int u, int v) {
if (parent[u] != v) swap(u, v);
assert(parent[u] == v);
return VtoE[u];
}
int ELID(int v) { return 2 * LID[v] - depth[v]; }
int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }
// 目標地点へ進む個数が k
int LA(int v, int k) {
assert(k <= depth[v]);
while (1) {
int u = head[v];
if (LID[v] - k >= LID[u]) return V[LID[v] - k];
k -= LID[v] - LID[u] + 1;
v = parent[u];
}
}
int la(int u, int v) { return LA(u, v); }
int LCA(int u, int v) {
for (;; v = parent[head[v]]) {
if (LID[u] > LID[v]) swap(u, v);
if (head[u] == head[v]) return u;
}
}
int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
int lca(int u, int v) { return LCA(u, v); }
int subtree_size(int v, int root = -1) {
if (root == -1) return RID[v] - LID[v];
if (v == root) return N;
int x = jump(v, root, 1);
if (in_subtree(v, x)) return RID[v] - LID[v];
return N - RID[x] + LID[x];
}
int dist(int a, int b) {
int c = LCA(a, b);
return depth[a] + depth[b] - 2 * depth[c];
}
WT dist_weighted(int a, int b) {
int c = LCA(a, b);
return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
}
// a is in b
bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }
int jump(int a, int b, ll k) {
if (k == 1) {
if (a == b) return -1;
return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
}
int c = LCA(a, b);
int d_ac = depth[a] - depth[c];
int d_bc = depth[b] - depth[c];
if (k > d_ac + d_bc) return -1;
if (k <= d_ac) return LA(a, k);
return LA(b, d_ac + d_bc - k);
}
vc<int> collect_child(int v) {
vc<int> res;
for (auto &&e: G[v])
if (e.to != parent[v]) res.eb(e.to);
return res;
}
vc<int> collect_light(int v) {
vc<int> res;
bool skip = true;
for (auto &&e: G[v])
if (e.to != parent[v]) {
if (!skip) res.eb(e.to);
skip = false;
}
return res;
}
vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
// [始点, 終点] の"閉"区間列。
vc<pair<int, int>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
down.eb(LID[head[v]], LID[v]);
v = parent[head[v]];
} else {
up.eb(LID[u], LID[head[u]]);
u = parent[head[u]];
}
}
if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
reverse(all(down));
up.insert(up.end(), all(down));
return up;
}
// 辺の列の情報 (frm,to,str)
// str = "heavy_up", "heavy_down", "light_up", "light_down"
vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
vc<tuple<int, int, string>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
down.eb(parent[v], v, "light_down"), v = parent[v];
} else {
if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
up.eb(u, parent[u], "light_up"), u = parent[u];
}
}
if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
reverse(all(down));
concat(up, down);
return up;
}
vc<int> restore_path(int u, int v) {
vc<int> P;
for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
if (a <= b) {
FOR(i, a, b + 1) P.eb(V[i]);
} else {
FOR_R(i, b, a + 1) P.eb(V[i]);
}
}
return P;
}
// path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
// https://codeforces.com/problemset/problem/500/G
pair<int, int> path_intersection(int a, int b, int c, int d) {
int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
if (x != y) return {x, y};
int z = ac ^ ad ^ cd;
if (x != z) x = -1;
return {x, x};
}
};
#line 9 "main.cpp"
void solve() {
LL(N);
Graph<int, 0> G(N);
FOR(v, N) {
INT(l, r);
--l, --r;
if (l != -1) G.add(v, l);
if (r != -1) G.add(v, r);
}
G.build();
#ifdef LOCAL
int god = RNG(0, N);
// print("god=", god);
vc<int> D = bfs01<int>(G, god).fi;
#endif
vc<int> label(N);
FOR(i, N) label[i] = 1 + i;
int QLE = 0;
auto ASK = [&](int u, int v) -> int {
++QLE;
#ifdef LOCAL
--u, --v;
if (D[u] < D[v]) return -1;
if (D[u] == D[v]) return 0;
if (D[u] > D[v]) return 1;
#endif
print("?", u, v);
int t;
read(t);
return t - 1;
};
auto out = [&](int v) -> void {
#ifdef LOCAL
assert((1 << QLE) <= N);
assert(v == god + 1);
return;
#endif
print("!", v);
};
while (len(label) > 1) {
if (len(label) == 2) {
int t = ASK(label[0], label[1]);
assert(t != 0);
if (t == -1) { return out(label[0]); }
if (t == 1) { return out(label[1]); }
}
Tree<decltype(G)> tree(G);
int c = find_centroids(G).fi;
vc<int> nbd;
for (auto& e: G[c]) nbd.eb(e.to);
sort(all(nbd), [&](auto& L, auto& R) -> bool { return tree.subtree_size(L, c) > tree.subtree_size(R, c); });
int a = nbd[0];
int b = nbd[1];
int t = ASK(label[a], label[b]);
vc<int> Da = bfs01<int>(G, a).fi;
vc<int> Db = bfs01<int>(G, b).fi;
vc<int> V;
FOR(v, G.N) {
int tt = 0;
if (Da[v] < Db[v]) tt = -1;
if (Da[v] > Db[v]) tt = 1;
if (t == tt) V.eb(v);
}
assert(len(V) <= floor<int>(G.N, 2));
G = G.rearrange(V);
label = rearrange(label, V);
}
out(label[0]);
}
signed main() {
INT(T);
FOR(T) solve();
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3852kb
input:
2 5 0 0 1 5 2 4 0 0 0 0 1 0 2 0 2 0 0 2
output:
? 3 1 ? 2 5 ! 2 ? 1 2 ! 2
result:
ok OK (2 test cases)
Test #2:
score: 0
Accepted
time: 162ms
memory: 4836kb
input:
5555 8 2 0 8 6 0 0 3 0 0 0 7 0 0 0 5 4 0 0 2 8 0 0 1 4 2 0 0 0 7 8 0 0 3 0 6 0 0 0 0 8 5 8 0 0 1 7 0 0 0 0 4 2 0 0 6 0 0 1 2 5 4 5 3 1 0 0 0 0 0 0 0 2 8 0 0 0 0 5 6 0 0 1 4 2 0 3 8 0 0 0 0 5 3 0 5 1 0 0 0 0 4 0 0 2 5 5 0 0 0 0 0 3 0 2 4 0 0 3 3 0 1 0 0 0 2 2 2 0 0 0 0 3 2 3 0 0 0 0 2 10 2 8 9 7 0 0 ...
output:
? 8 6 ? 8 3 ? 5 8 ! 8 ? 7 2 ? 8 7 ? 6 8 ! 6 ? 8 3 ? 8 2 ? 4 6 ! 6 ? 2 4 ? 2 3 ! 3 ? 5 7 ? 4 1 ! 4 ? 5 1 ? 4 5 ! 5 ? 4 1 ? 3 4 ! 3 ? 2 3 ! 3 ? 1 2 ! 1 ? 3 2 ! 2 ? 7 1 ? 7 3 ? 4 6 ! 6 ? 1 2 ! 1 ? 5 9 ? 5 8 ? 3 4 ! 3 ? 10 3 ? 8 2 ? 4 6 ! 4 ? 9 3 ? 7 1 ? 2 9 ! 2 ? 1 2 ! 2 ? 4 3 ? 7 1 ! 1 ? 4 5 ? 8 4 ? 3...
result:
ok OK (5555 test cases)
Test #3:
score: 0
Accepted
time: 93ms
memory: 4000kb
input:
600 2 2 0 0 0 2 3 2 0 3 0 0 0 2 4 4 0 1 0 0 0 3 0 0 0 5 4 0 0 0 1 0 2 0 3 0 2 0 6 4 0 6 0 2 0 5 0 0 0 1 0 0 0 7 7 0 3 0 6 0 5 0 2 0 1 0 0 0 0 1 8 7 0 0 0 2 0 8 0 1 0 5 0 3 0 6 0 0 0 0 9 7 0 4 0 2 0 1 0 0 0 8 0 9 0 5 0 6 0 2 0 2 10 9 0 6 0 8 0 7 0 0 0 10 0 2 0 4 0 5 0 1 0 0 0 2 11 2 0 10 0 6 0 9 0 0 ...
output:
? 1 2 ! 2 ? 3 1 ! 1 ? 4 2 ? 3 4 ! 3 ? 3 4 ? 2 4 ! 2 ? 6 4 ? 6 3 ! 6 ? 2 6 ? 4 2 ! 5 ? 5 7 ? 8 5 ? 4 8 ! 4 ? 9 1 ? 4 3 ? 1 4 ! 4 ? 6 7 ? 9 10 ? 5 9 ! 9 ? 9 2 ? 6 10 ? 2 10 ! 10 ? 9 2 ? 10 1 ? 10 5 ! 10 ? 2 3 ? 13 6 ? 13 2 ! 9 ? 12 9 ? 11 8 ? 12 11 ! 11 ? 14 2 ? 7 4 ? 4 2 ! 2 ? 13 8 ? 14 10 ? 12 14 ? ...
result:
ok OK (600 test cases)
Test #4:
score: 0
Accepted
time: 198ms
memory: 25388kb
input:
2 99999 21832 0 77205 0 62668 0 58313 0 14640 0 76941 0 62678 0 8464 0 43145 0 26195 0 46140 0 83205 0 40047 0 81645 0 27077 0 92036 0 14236 0 3576 0 15430 0 75654 0 29049 0 62218 0 83318 0 1116 0 77861 0 9755 0 49236 0 70959 0 62295 0 33580 0 88208 0 55840 0 71061 0 24695 0 88831 0 1891 0 57285 0 9...
output:
? 43991 70790 ? 98261 46637 ? 86742 20402 ? 93018 13737 ? 183 65869 ? 50098 65302 ? 76756 40526 ? 39480 64288 ? 77581 45873 ? 87758 25897 ? 12522 46508 ? 37652 61705 ? 96579 60904 ? 71375 32943 ? 81055 78992 ? 96579 81055 ! 81055 ? 44110 46352 ? 63067 47168 ? 94632 84556 ? 32192 28594 ? 65119 94765 ...
result:
ok OK (2 test cases)
Test #5:
score: 0
Accepted
time: 105ms
memory: 15112kb
input:
15 3 0 0 1 0 2 0 1 7 6 0 3 0 5 0 0 0 7 0 4 0 1 0 2 2 15 6 0 5 0 1 0 7 0 14 0 11 0 15 0 12 0 2 0 4 0 9 0 13 0 0 0 8 0 3 0 0 0 0 31 3 0 31 0 17 0 23 0 4 0 13 0 1 0 12 0 6 0 0 0 20 0 26 0 14 0 29 0 8 0 25 0 21 0 19 0 5 0 15 0 18 0 10 0 22 0 7 0 28 0 2 0 24 0 30 0 27 0 9 0 16 0 2 0 0 2 63 15 0 62 0 5 0 ...
output:
? 3 1 ! 2 ? 5 1 ? 4 1 ! 1 ? 9 6 ? 8 5 ? 13 8 ! 13 ? 13 29 ? 18 17 ? 5 23 ? 18 5 ! 5 ? 8 37 ? 24 10 ? 23 3 ? 62 59 ? 59 3 ! 5 ? 89 36 ? 6 71 ? 101 116 ? 64 57 ? 59 14 ? 59 64 ! 64 ? 64 233 ? 148 51 ? 176 1 ? 6 178 ? 100 16 ? 168 180 ? 168 100 ! 168 ? 439 48 ? 144 457 ? 142 376 ? 241 10 ? 39 178 ? 448...
result:
ok OK (15 test cases)
Test #6:
score: 0
Accepted
time: 107ms
memory: 15184kb
input:
16 2 2 0 0 0 2 4 4 0 3 0 1 0 0 0 0 0 8 5 0 0 0 4 0 8 0 2 0 3 0 6 0 1 0 0 0 2 16 2 0 5 0 1 0 11 0 13 0 14 0 8 0 6 0 0 0 4 0 3 0 7 0 15 0 10 0 16 0 9 0 0 0 0 0 32 15 0 0 0 14 0 18 0 26 0 17 0 25 0 27 0 6 0 9 0 4 0 13 0 23 0 30 0 32 0 12 0 11 0 31 0 28 0 3 0 19 0 10 0 22 0 7 0 5 0 29 0 24 0 20 0 21 0 1...
output:
? 1 2 ! 2 ? 3 4 ? 2 3 ! 2 ? 8 3 ? 5 8 ? 2 5 ! 5 ? 11 1 ? 14 8 ? 10 11 ? 10 14 ! 10 ? 16 13 ? 29 19 ? 25 24 ? 26 25 ? 26 29 ! 29 ? 60 3 ? 41 49 ? 55 59 ? 28 22 ? 34 55 ? 28 34 ! 28 ? 80 113 ? 61 97 ? 42 30 ? 83 117 ? 91 55 ? 71 91 ? 42 71 ! 42 ? 106 3 ? 116 254 ? 170 17 ? 228 107 ? 210 97 ? 75 84 ? 2...
result:
ok OK (16 test cases)
Test #7:
score: 0
Accepted
time: 112ms
memory: 15512kb
input:
15 2 2 0 0 0 2 6 5 0 1 0 6 0 2 0 3 0 0 0 0 2 14 12 0 0 0 11 0 5 0 7 0 1 0 8 0 10 0 14 0 13 0 6 0 9 0 2 0 4 0 0 0 1 30 10 0 29 0 23 0 28 0 9 0 14 0 2 0 30 0 19 0 0 0 15 0 1 0 22 0 8 0 18 0 27 0 7 0 24 0 26 0 3 0 20 0 25 0 6 0 17 0 4 0 12 0 21 0 16 0 13 0 5 0 0 0 0 2 62 24 0 22 0 18 0 17 0 49 0 53 0 3...
output:
? 1 2 ! 2 ? 5 2 ? 5 6 ! 6 ? 14 5 ? 6 12 ? 6 3 ! 11 ? 27 20 ? 13 2 ? 25 28 ? 25 13 ! 13 ? 60 10 ? 2 9 ? 6 25 ? 16 41 ? 41 6 ! 53 ? 94 9 ? 59 69 ? 17 52 ? 111 44 ? 51 46 ? 44 46 ! 44 ? 159 204 ? 47 235 ? 109 158 ? 171 46 ? 66 124 ? 205 194 ? 194 66 ! 66 ? 359 209 ? 137 139 ? 71 459 ? 474 289 ? 36 156 ...
result:
ok OK (15 test cases)
Test #8:
score: 0
Accepted
time: 99ms
memory: 4016kb
input:
600 2 2 0 0 0 2 3 3 2 0 0 0 0 2 4 3 0 0 0 0 0 1 2 0 0 5 0 0 3 1 4 5 0 0 0 0 1 0 6 3 5 1 4 0 0 6 0 0 0 0 0 0 0 7 3 7 0 0 0 0 2 5 0 0 1 4 0 0 0 1 8 0 0 3 7 1 0 2 5 6 8 0 0 0 0 0 0 0 1 0 9 9 8 0 0 7 2 0 0 0 0 0 0 0 0 4 5 3 6 0 1 2 10 3 6 8 0 4 2 5 7 0 0 10 9 0 0 0 0 0 0 0 0 0 1 2 11 0 0 4 9 5 8 6 3 0 0...
output:
? 1 2 ! 2 ? 2 3 ! 3 ? 4 3 ? 2 4 ! 2 ? 2 5 ? 3 4 ! 3 ? 2 3 ? 6 2 ! 6 ? 4 1 ? 5 2 ! 4 ? 4 3 ? 6 4 ? 5 8 ! 5 ? 1 3 ? 5 1 ? 4 8 ! 8 ? 1 4 ? 10 1 ? 6 9 ! 9 ? 2 3 ? 10 2 ? 9 11 ! 11 ? 1 5 ? 4 1 ? 7 8 ! 8 ? 13 7 ? 12 5 ? 13 11 ! 12 ? 14 10 ? 3 8 ? 9 1 ! 9 ? 8 14 ? 4 9 ? 10 15 ! 15 ? 15 7 ? 15 14 ? 15 1 ? 3...
result:
ok OK (600 test cases)
Test #9:
score: 0
Accepted
time: 155ms
memory: 16976kb
input:
2 99999 0 0 7999 97267 75750 37659 0 0 0 0 33761 92098 90707 18838 13602 27569 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14586 86647 1519 23132 0 0 3430 14643 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47066 36968 95308 38482 34100 25297 0 0 0 0 0 0 0 0 88902 58991 0 0 0 0 66315 68538 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
output:
? 50379 69076 ? 79924 11838 ? 18079 15463 ? 72017 29994 ? 27856 80147 ? 49723 87765 ? 57030 35767 ? 63477 72652 ? 86444 68730 ? 12787 15589 ? 62467 38758 ? 90237 89947 ? 83592 22664 ? 72376 38416 ? 64009 52040 ! 52040 ? 72481 42261 ? 96633 84675 ? 81852 2124 ? 84822 64228 ? 50823 55776 ? 14565 26326...
result:
ok OK (2 test cases)
Test #10:
score: 0
Accepted
time: 100ms
memory: 12044kb
input:
15 3 3 2 0 0 0 0 1 7 0 0 3 6 0 0 7 2 0 0 0 0 5 1 2 2 15 14 12 0 0 0 0 0 0 8 6 10 11 0 0 3 7 2 4 0 0 0 0 0 0 15 5 0 0 9 1 0 0 0 31 4 9 0 0 29 17 0 0 0 0 15 31 5 21 18 14 0 0 0 0 0 0 16 2 12 7 0 0 23 10 0 0 30 13 0 0 24 27 11 26 0 0 0 0 0 0 0 0 19 20 0 0 0 0 0 0 6 25 8 1 28 22 2 0 0 2 63 53 48 40 57 0...
output:
? 2 3 ! 1 ? 2 7 ? 5 1 ! 1 ? 5 15 ? 6 8 ? 11 10 ! 11 ? 29 17 ? 13 30 ? 7 12 ? 21 5 ! 5 ? 2 1 ? 40 57 ? 6 44 ? 52 32 ? 24 3 ! 32 ? 20 115 ? 68 71 ? 21 73 ? 26 61 ? 119 36 ? 87 69 ! 69 ? 70 140 ? 250 78 ? 99 222 ? 162 154 ? 253 38 ? 108 156 ? 143 198 ! 143 ? 60 121 ? 414 74 ? 99 184 ? 301 403 ? 425 477...
result:
ok OK (15 test cases)
Test #11:
score: 0
Accepted
time: 103ms
memory: 12280kb
input:
16 2 0 0 1 0 2 4 4 2 0 0 0 0 3 0 0 0 8 3 0 0 0 0 0 0 0 1 2 0 0 6 4 5 7 0 1 2 16 16 15 0 0 0 0 0 0 7 11 8 10 0 0 13 0 0 0 0 0 0 0 3 9 0 0 4 2 5 14 6 12 0 0 1 0 32 0 0 22 21 25 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 10 30 0 1 24 12 31 0 0 0 0 16 8 3 15 11 26 23 14 28 20 6 9 0 0 13 27 0 0 0 0 7 17 0 0 0 ...
output:
? 1 2 ! 2 ? 4 2 ? 3 4 ! 3 ? 8 1 ? 8 4 ? 6 7 ! 7 ? 16 15 ? 16 8 ? 16 3 ? 9 12 ! 9 ? 32 3 ? 22 21 ? 23 14 ? 9 6 ! 9 ? 37 58 ? 19 40 ? 63 55 ? 18 4 ? 25 35 ! 35 ? 92 13 ? 92 57 ? 102 80 ? 48 108 ? 50 90 ? 110 42 ! 42 ? 245 3 ? 245 223 ? 131 150 ? 193 34 ? 71 164 ? 230 148 ? 213 212 ! 230 ? 81 324 ? 227...
result:
ok OK (16 test cases)
Test #12:
score: 0
Accepted
time: 100ms
memory: 12168kb
input:
15 2 0 0 1 0 2 6 6 4 1 5 0 0 0 0 3 0 0 0 0 2 14 0 0 1 7 5 11 13 9 0 0 2 8 0 0 10 0 0 0 0 0 0 0 14 6 0 0 3 4 0 0 1 30 7 0 5 13 0 0 0 0 14 30 15 20 0 0 0 0 3 19 0 0 0 0 11 21 9 1 16 24 0 0 0 0 28 2 8 10 0 0 0 0 0 0 0 0 18 6 0 0 4 29 12 25 0 0 23 26 0 0 27 22 0 0 0 2 62 0 0 0 0 28 47 7 38 0 0 0 0 17 26...
output:
? 1 2 ! 2 ? 2 6 ? 3 2 ! 2 ? 14 6 ? 4 3 ? 9 13 ! 4 ? 28 2 ? 23 26 ? 18 6 ? 10 8 ! 8 ? 61 36 ? 18 30 ? 31 50 ? 10 51 ? 44 42 ! 42 ? 125 93 ? 17 123 ? 5 15 ? 52 12 ? 113 4 ? 67 124 ! 124 ? 253 196 ? 224 42 ? 81 61 ? 132 123 ? 55 53 ? 166 111 ? 220 66 ! 66 ? 284 376 ? 30 32 ? 406 22 ? 128 180 ? 224 1 ? ...
result:
ok OK (15 test cases)
Test #13:
score: 0
Accepted
time: 95ms
memory: 4044kb
input:
600 2 0 0 1 0 2 3 0 0 1 3 0 0 2 4 2 4 0 0 0 0 3 0 0 0 5 2 5 0 0 0 0 0 0 4 3 1 0 6 6 4 0 0 0 0 3 0 2 1 0 0 0 0 7 0 0 0 0 2 4 5 6 0 0 0 0 1 3 0 1 8 2 7 0 0 6 0 0 0 8 3 0 0 4 5 0 0 0 0 0 9 5 2 0 0 7 4 6 8 0 0 0 0 0 0 9 1 0 0 0 0 2 10 3 5 10 7 0 0 0 0 6 2 0 0 4 0 9 1 0 0 0 0 2 0 0 11 9 6 4 1 0 0 0 0 11 ...
output:
? 1 2 ! 2 ? 3 1 ! 1 ? 4 2 ? 3 4 ! 3 ? 1 3 ? 4 5 ! 4 ? 5 4 ? 2 5 ! 2 ? 4 7 ? 5 6 ! 4 ? 7 3 ? 7 2 ? 4 7 ! 4 ? 4 1 ? 4 7 ? 4 6 ! 6 ? 2 1 ? 8 3 ? 8 9 ! 8 ? 10 1 ? 10 8 ? 5 11 ! 11 ? 12 1 ? 12 11 ? 2 11 ! 2 ? 2 4 ? 12 2 ? 7 12 ! 12 ? 8 12 ? 8 10 ? 7 10 ! 10 ? 14 9 ? 1 14 ? 11 15 ! 15 ? 10 15 ? 6 5 ? 10 1...
result:
ok OK (600 test cases)
Test #14:
score: 0
Accepted
time: 171ms
memory: 22124kb
input:
2 99999 96748 53986 34197 77552 29863 63559 79099 26449 45078 1051 0 0 27416 4135 0 0 38606 81189 93892 68603 48776 185 79602 18311 51243 83678 89044 40032 28883 35663 0 0 0 0 21603 15821 0 0 51448 75971 70275 8326 0 0 0 0 57049 72937 3297 94939 0 0 59258 39159 3205 34675 54876 24769 0 0 0 0 0 0 851...
output:
? 71188 96970 ? 87538 6820 ? 59029 32876 ? 46360 20365 ? 49372 9490 ? 51870 93805 ? 74496 96975 ? 90932 266 ? 99552 77780 ? 24315 12293 ? 74615 44540 ? 87219 24616 ? 69844 30178 ? 76960 38506 ? 76960 69844 ? 62351 69844 ! 62351 ? 70265 86513 ? 30583 6109 ? 26639 74855 ? 82870 83080 ? 44869 39637 ? 3...
result:
ok OK (2 test cases)
Test #15:
score: 0
Accepted
time: 99ms
memory: 13536kb
input:
15 3 0 0 1 3 0 0 1 7 0 0 1 7 0 0 6 2 3 4 0 0 0 0 0 1 15 2 11 0 0 13 1 12 14 0 0 0 0 5 8 10 4 0 0 0 0 0 0 0 0 0 0 6 15 9 3 0 0 1 31 24 22 0 0 31 6 0 0 4 3 11 19 0 0 0 0 28 21 25 20 0 0 0 0 0 0 2 16 0 0 27 18 8 10 15 17 26 1 23 29 7 5 12 14 0 0 0 0 0 0 0 0 0 0 0 0 30 13 0 0 0 0 0 0 0 0 63 51 35 33 57 ...
output:
? 3 1 ! 2 ? 2 5 ? 7 1 ! 2 ? 15 4 ? 1 15 ? 2 11 ! 1 ? 14 1 ? 10 18 ? 29 10 ? 30 13 ! 30 ? 38 44 ? 42 1 ? 2 9 ? 34 2 ? 23 5 ! 5 ? 51 31 ? 96 62 ? 100 8 ? 52 89 ? 82 52 ? 70 57 ! 70 ? 124 122 ? 162 102 ? 84 231 ? 110 135 ? 147 223 ? 236 147 ? 201 80 ! 80 ? 322 266 ? 146 414 ? 72 335 ? 66 306 ? 89 76 ? ...
result:
ok OK (15 test cases)
Test #16:
score: 0
Accepted
time: 103ms
memory: 14056kb
input:
16 2 0 0 1 0 2 4 0 0 1 0 4 2 0 0 0 0 8 0 0 0 0 0 0 3 5 8 6 2 0 1 4 0 0 0 0 2 16 0 0 7 8 0 0 1 2 0 0 0 0 0 0 5 10 3 0 12 16 14 13 0 0 15 4 0 0 0 0 6 9 0 0 0 0 32 26 17 5 31 28 25 18 7 0 0 0 0 14 12 15 0 22 4 0 0 29 1 19 2 0 0 0 0 0 0 6 8 10 21 0 0 0 0 0 0 13 3 0 0 0 0 0 0 32 30 0 0 20 9 0 0 0 0 23 16...
output:
? 1 2 ! 2 ? 3 1 ? 3 4 ! 3 ? 5 7 ? 6 8 ? 2 6 ! 6 ? 8 4 ? 16 8 ? 16 3 ? 6 16 ! 6 ? 11 17 ? 12 4 ? 31 12 ? 31 29 ? 24 31 ! 31 ? 56 43 ? 19 25 ? 55 36 ? 51 19 ? 55 21 ? 50 55 ! 50 ? 38 43 ? 66 19 ? 105 12 ? 83 63 ? 114 83 ? 114 98 ? 44 114 ! 44 ? 133 170 ? 75 121 ? 72 114 ? 247 250 ? 30 169 ? 176 247 ? ...
result:
ok OK (16 test cases)
Test #17:
score: 0
Accepted
time: 109ms
memory: 14056kb
input:
15 2 0 0 1 0 2 6 0 0 5 0 1 2 0 0 0 0 4 3 2 0 14 8 14 0 0 0 0 0 0 0 0 12 11 10 0 0 0 2 7 0 0 4 1 0 0 3 6 5 9 2 0 0 30 29 21 6 9 0 0 0 0 0 0 0 0 0 0 19 17 24 30 0 0 14 26 23 0 0 0 0 0 25 18 0 0 7 20 16 12 0 0 13 11 28 8 10 15 0 0 0 0 0 0 3 22 5 2 0 0 0 0 4 1 0 2 0 2 62 0 0 34 33 0 0 0 0 0 0 37 45 0 0 ...
output:
? 1 2 ! 2 ? 6 2 ? 2 5 ! 2 ? 11 14 ? 14 7 ? 5 14 ! 5 ? 20 8 ? 15 26 ? 20 26 ? 13 20 ! 20 ? 42 59 ? 12 31 ? 40 19 ? 59 19 ? 4 19 ! 19 ? 40 17 ? 102 11 ? 119 110 ? 67 15 ? 119 15 ? 35 119 ! 119 ? 90 189 ? 158 221 ? 198 132 ? 32 240 ? 4 49 ? 240 49 ? 50 240 ! 50 ? 60 192 ? 303 29 ? 175 15 ? 496 384 ? 33...
result:
ok OK (15 test cases)
Test #18:
score: 0
Accepted
time: 170ms
memory: 17684kb
input:
2 99999 0 0 88119 0 72740 0 6901 19702 0 0 10620 84889 0 0 9552 63972 45156 60768 9152 72379 0 0 59875 97207 48193 0 17282 54916 65927 27713 80083 15817 36966 75381 0 0 77279 56298 0 0 11554 61779 0 0 89976 0 65282 42151 95206 62876 97329 86772 0 0 0 0 0 0 11820 0 0 0 20432 0 50520 39907 0 0 46948 1...
output:
? 52174 35226 ? 26122 16093 ? 11494 10853 ? 11494 91694 ? 90037 73088 ? 90037 21572 ? 51091 91442 ? 7067 93596 ? 75096 14316 ? 75096 55875 ? 42793 96805 ? 59747 42793 ? 67072 472 ? 64770 59747 ! 92650 ? 80592 36933 ? 50906 68004 ? 73367 65219 ? 20489 33796 ? 74041 19704 ? 35779 74041 ? 35779 85560 ?...
result:
ok OK (2 test cases)
Test #19:
score: 0
Accepted
time: 427ms
memory: 3692kb
input:
100000 2 0 0 0 1 2 2 0 0 0 1 0 2 0 0 0 1 2 2 0 0 0 1 0 2 0 0 0 1 2 2 0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 2 2 0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 2 2 0 0 0 1 2 2 0 0 0 1 0 2 0 0 0 1 2 2 0 0 0 1 2 2 0 0 0 1 2 2 0 0 0 1 2 2 0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 0 2 0 0 0 1 2 2 0 0 0 1 0 2 0 0...
output:
? 1 2 ! 2 ? 1 2 ! 1 ? 1 2 ! 2 ? 1 2 ! 1 ? 1 2 ! 2 ? 1 2 ! 1 ? 1 2 ! 1 ? 1 2 ! 1 ? 1 2 ! 1 ? 1 2 ! 2 ? 1 2 ! 1 ? 1 2 ! 1 ? 1 2 ! 2 ? 1 2 ! 2 ? 1 2 ! 1 ? 1 2 ! 2 ? 1 2 ! 2 ? 1 2 ! 2 ? 1 2 ! 2 ? 1 2 ! 1 ? 1 2 ! 1 ? 1 2 ! 1 ? 1 2 ! 2 ? 1 2 ! 1 ? 1 2 ! 1 ? 1 2 ! 2 ? 1 2 ! 2 ? 1 2 ! 2 ? 1 2 ! 2 ? 1 2 ! 2 ...
result:
ok OK (100000 test cases)
Extra Test:
score: 0
Extra Test Passed