QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#726376 | #7680. Subway | maspy | WA | 1ms | 4064kb | C++23 | 18.4kb | 2024-11-08 23:24:54 | 2024-11-08 23:24:55 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/geo/base.hpp"
template <typename T>
struct Point {
T x, y;
Point() : x(0), y(0) {}
template <typename A, typename B>
Point(A x, B y) : x(x), y(y) {}
template <typename A, typename B>
Point(pair<A, B> p) : x(p.fi), y(p.se) {}
Point operator+=(const Point p) {
x += p.x, y += p.y;
return *this;
}
Point operator-=(const Point p) {
x -= p.x, y -= p.y;
return *this;
}
Point operator+(Point p) const { return {x + p.x, y + p.y}; }
Point operator-(Point p) const { return {x - p.x, y - p.y}; }
bool operator==(Point p) const { return x == p.x && y == p.y; }
bool operator!=(Point p) const { return x != p.x || y != p.y; }
Point operator-() const { return {-x, -y}; }
Point operator*(T t) const { return {x * t, y * t}; }
Point operator/(T t) const { return {x / t, y / t}; }
bool operator<(Point p) const {
if (x != p.x) return x < p.x;
return y < p.y;
}
T dot(const Point& other) const { return x * other.x + y * other.y; }
T det(const Point& other) const { return x * other.y - y * other.x; }
double norm() { return sqrtl(x * x + y * y); }
double angle() { return atan2(y, x); }
Point rotate(double theta) {
static_assert(!is_integral<T>::value);
double c = cos(theta), s = sin(theta);
return Point{c * x - s * y, s * x + c * y};
}
Point rot90(bool ccw) { return (ccw ? Point{-y, x} : Point{y, -x}); }
};
#ifdef FASTIO
template <typename T>
void rd(Point<T>& p) {
fastio::rd(p.x), fastio::rd(p.y);
}
template <typename T>
void wt(Point<T>& p) {
fastio::wt(p.x);
fastio::wt(' ');
fastio::wt(p.y);
}
#endif
// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
T x = (B - A).det(C - A);
if (x > 0) return 1;
if (x < 0) return -1;
return 0;
}
template <typename REAL, typename T, typename U>
REAL dist(Point<T> A, Point<U> B) {
REAL dx = REAL(A.x) - REAL(B.x);
REAL dy = REAL(A.y) - REAL(B.y);
return sqrt(dx * dx + dy * dy);
}
// ax+by+c
template <typename T>
struct Line {
T a, b, c;
Line(T a, T b, T c) : a(a), b(b), c(c) {}
Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; }
Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}
template <typename U>
U eval(Point<U> P) {
return a * P.x + b * P.y + c;
}
template <typename U>
T eval(U x, U y) {
return a * x + b * y + c;
}
// 同じ直線が同じ a,b,c で表現されるようにする
void normalize() {
static_assert(is_same_v<T, int> || is_same_v<T, long long>);
T g = gcd(gcd(abs(a), abs(b)), abs(c));
a /= g, b /= g, c /= g;
if (b < 0) { a = -a, b = -b, c = -c; }
if (b == 0 && a < 0) { a = -a, b = -b, c = -c; }
}
bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};
template <typename T>
struct Segment {
Point<T> A, B;
Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}
bool contain(Point<T> C) {
T det = (C - A).det(B - A);
if (det != 0) return 0;
return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
}
Line<T> to_Line() { return Line(A, B); }
};
template <typename REAL>
struct Circle {
Point<REAL> O;
REAL r;
Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
template <typename T>
bool contain(Point<T> p) {
REAL dx = p.x - O.x, dy = p.y - O.y;
return dx * dx + dy * dy <= r * r;
}
};
#line 5 "main.cpp"
/*
ある直線との内積について distinct にする
間の点もとれるようにする
直交方向に50個ずつ点をとる, あるならそこから
*/
using P = Point<ll>;
ll K = 2048;
void solve() {
LL(N);
vc<P> A(N);
vi B(N);
FOR(i, N) read(A[i], B[i]);
P p = {K, 1};
P q = p.rot90(true);
vi dot(N);
FOR(i, N) dot[i] = A[i].dot(p);
auto I = argsort(dot);
dot = rearrange(dot, I);
A = rearrange(A, I);
B = rearrange(B, I);
ll n = MAX(B);
auto gen = [&](ll p) -> vc<P> {
vc<P> ANS;
int k = LB(dot, p);
if (k < len(dot) && dot[k] == p) {
ANS.eb(A[k]);
} else {
auto [x, y] = divmod<ll>(p, K);
ANS.eb(x, y);
}
FOR(n - 1) ANS.eb(ANS.back() + q);
return ANS;
};
vv(P, ANS, n, 2 * N);
FOR(i, N) {
ll c = dot[i];
auto point = gen(c - 1);
FOR(k, n) ANS[k][2 * i + 0] = point[k];
}
FOR(i, N) {
ll c = dot[i];
auto point = gen(c);
FOR(k, n) {
ANS[k][2 * i + 1] = point[k];
if (k < B[i]) ANS[k][2 * i + 1] = point[0];
}
}
print(n);
FOR(i, n) {
vi out;
out.eb(len(ANS[i]));
for (auto& p: ANS[i]) out.eb(p.x), out.eb(p.y);
print(out);
}
}
signed main() { solve(); }
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3612kb
input:
3 1 2 1 2 1 2 3 3 2
output:
2 6 1 1 1 2 2 0 2 1 3 2 3 3 6 0 2049 0 2050 1 2048 2 1 2 2050 3 3
result:
ok ok Sum L = 12
Test #2:
score: 0
Accepted
time: 0ms
memory: 3636kb
input:
1 1 1 1
output:
1 2 1 0 1 1
result:
ok ok Sum L = 2
Test #3:
score: 0
Accepted
time: 0ms
memory: 3560kb
input:
1 1 1 50
output:
50 2 1 0 1 1 2 0 2048 1 1 2 -1 4096 1 1 2 -2 6144 1 1 2 -3 8192 1 1 2 -4 10240 1 1 2 -5 12288 1 1 2 -6 14336 1 1 2 -7 16384 1 1 2 -8 18432 1 1 2 -9 20480 1 1 2 -10 22528 1 1 2 -11 24576 1 1 2 -12 26624 1 1 2 -13 28672 1 1 2 -14 30720 1 1 2 -15 32768 1 1 2 -16 34816 1 1 2 -17 36864 1 1 2 -18 38912 1 ...
result:
ok ok Sum L = 100
Test #4:
score: 0
Accepted
time: 1ms
memory: 3880kb
input:
50 662 -567 48 728 -120 7 307 669 27 -885 -775 21 100 242 9 -784 -537 41 940 198 46 736 -551 30 -449 456 16 -945 382 18 -182 810 49 213 187 44 853 245 48 617 -305 19 -81 261 3 617 208 8 -548 -652 6 -888 -667 14 -371 -812 43 202 -702 10 -668 -725 5 961 -919 33 -870 -697 50 428 810 29 560 405 7 348 -3...
output:
50 100 -982 1854 -981 -193 -945 381 -945 382 -926 670 -926 671 -889 1380 -888 -667 -886 1272 -885 -775 -871 1350 -870 -697 -825 380 -825 381 -785 1510 -784 -537 -683 730 -683 731 -669 1322 -668 -725 -580 1610 -579 -437 -558 824 -558 825 -549 1395 -548 -652 -500 1870 -499 -177 -470 1791 -469 -256 -46...
result:
ok ok Sum L = 5000
Test #5:
score: 0
Accepted
time: 0ms
memory: 3684kb
input:
50 -772 697 1 -756 -909 1 659 923 1 850 471 1 260 -24 1 473 -639 1 -575 393 1 -466 197 1 333 -637 1 -192 -890 1 103 546 1 749 -723 1 -573 613 1 214 -138 1 277 928 1 266 291 1 911 275 1 -680 -67 1 69 190 1 -197 -795 1 684 618 1 729 -115 1 -658 -229 1 -595 -470 1 898 -172 1 401 81 1 133 685 1 223 400 ...
output:
1 100 -772 696 -772 697 -757 1138 -756 -909 -681 1980 -680 -67 -667 1965 -666 -82 -659 1818 -658 -229 -596 1577 -595 -470 -575 392 -575 393 -573 612 -573 613 -572 1331 -571 -716 -532 837 -532 838 -530 889 -530 890 -466 196 -466 197 -389 707 -389 708 -346 457 -346 458 -304 896 -304 897 -274 1375 -273...
result:
ok ok Sum L = 100
Test #6:
score: 0
Accepted
time: 0ms
memory: 3692kb
input:
50 -56 747 3 993 -490 4 930 -139 1 -298 -330 1 938 -351 5 -973 100 5 -472 44 4 345 628 5 481 -91 4 789 581 5 457 -29 4 871 -799 1 692 994 4 699 854 2 893 -33 1 -483 256 3 -962 -540 2 846 -893 1 830 609 5 845 -383 2 -552 -966 1 -544 -51 1 564 186 4 -615 -675 1 618 -911 3 -561 -302 4 -293 667 3 -334 -...
output:
5 100 -999 329 -999 330 -973 99 -973 100 -963 1507 -962 -540 -889 1434 -888 -613 -842 380 -842 381 -793 1422 -792 -625 -638 1246 -637 -801 -616 1372 -615 -675 -562 1745 -561 -302 -553 1081 -552 -966 -545 1996 -544 -51 -483 255 -483 256 -472 43 -472 44 -364 168 -364 169 -335 1512 -334 -535 -299 1717 ...
result:
ok ok Sum L = 500
Test #7:
score: 0
Accepted
time: 0ms
memory: 3720kb
input:
50 600 997 5 -893 -204 3 408 443 1 -560 -748 7 -647 161 6 -285 -980 1 87 -582 7 -48 -721 7 997 285 2 -189 -728 8 525 222 4 -324 816 9 760 317 3 753 -480 10 -813 -921 3 -325 -875 8 -747 816 10 -627 605 7 775 786 6 136 -54 2 274 948 10 216 -113 7 924 68 3 101 576 8 60 -501 2 898 801 8 -767 -974 10 -99...
output:
10 100 -983 1835 -982 -212 -980 752 -980 753 -973 1735 -972 -312 -894 1843 -893 -204 -814 1126 -813 -921 -806 1743 -805 -304 -768 1073 -767 -974 -747 815 -747 816 -661 1712 -660 -335 -647 160 -647 161 -627 604 -627 605 -561 1299 -560 -748 -499 1589 -498 -458 -419 563 -419 564 -398 1306 -397 -741 -35...
result:
ok ok Sum L = 1000
Test #8:
score: 0
Accepted
time: 1ms
memory: 4064kb
input:
50 24 -889 49 117 418 49 25 524 44 980 -416 43 -494 357 41 -287 -285 46 151 574 41 -289 68 49 -515 -540 41 -367 -178 47 -887 151 45 197 -272 47 714 724 45 -737 94 49 810 830 47 808 -695 41 537 -637 49 -142 -167 44 -749 -631 47 445 -444 42 801 910 43 59 363 42 -912 466 50 -649 -479 48 -958 -511 49 88...
output:
50 100 -998 342 -998 343 -959 1536 -958 -511 -912 465 -912 466 -887 150 -887 151 -869 1933 -868 -114 -787 1663 -786 -384 -750 1416 -749 -631 -737 93 -737 94 -650 1568 -649 -479 -615 808 -615 809 -589 1909 -588 -138 -516 1507 -515 -540 -494 356 -494 357 -486 865 -486 866 -368 1869 -367 -178 -308 651 ...
result:
ok ok Sum L = 5000
Test #9:
score: 0
Accepted
time: 1ms
memory: 3688kb
input:
50 151 -171 50 -367 -951 50 808 569 50 150 -618 50 27 -476 50 -846 729 50 549 -456 50 50 646 50 294 -70 50 -571 104 50 128 -265 50 913 -700 50 267 -965 50 896 846 50 -2 713 50 21 679 50 -515 975 50 168 180 50 -369 -98 50 676 115 50 643 -779 50 920 -237 50 -324 450 50 149 -378 50 -882 -602 50 -126 -7...
output:
50 100 -883 1445 -882 -602 -851 278 -851 279 -846 728 -846 729 -841 600 -841 601 -605 1879 -604 -168 -571 103 -571 104 -544 306 -544 307 -515 974 -515 975 -501 926 -501 927 -474 779 -474 780 -370 1949 -369 -98 -368 1096 -367 -951 -335 55 -335 56 -324 449 -324 450 -303 1058 -302 -989 -194 1677 -193 -...
result:
ok ok Sum L = 5000
Test #10:
score: -100
Wrong Answer
time: 1ms
memory: 4060kb
input:
50 4 5 34 1 -5 24 -4 -4 32 -3 3 28 0 -1 21 1 -4 25 0 0 30 0 -4 42 -3 -2 44 -5 -3 37 4 -1 46 5 2 20 2 2 37 -2 5 35 -2 -1 39 2 4 32 -4 -3 42 0 3 32 3 5 47 -4 1 2 5 -1 17 -5 -4 5 -2 2 29 -5 1 11 2 -5 43 4 4 14 -5 0 9 0 -5 17 5 1 27 -3 0 24 -1 4 16 5 0 50 3 -2 18 1 -2 6 2 -1 29 -1 3 38 1 5 36 -3 1 28 -3...
output:
50 100 -6 2043 -5 -4 -5 -4 -5 -3 -6 2047 -5 0 -5 0 -5 1 -5 2043 -4 -4 -4 -4 -4 -3 -4 0 -4 1 -4 2044 -3 -3 -3 -3 -3 -2 -3 -2 -3 -1 -3 -1 -3 0 -3 0 -3 1 -3 2 -3 3 -3 4 -3 5 -3 2042 -2 -5 -3 2046 -2 -1 -2 1 -2 2 -2 4 -2 5 -2 2043 -1 -4 -1 2 -1 3 -1 3 -1 4 -1 4 -1 5 -1 2042 0 -5 0 -5 0 -4 0 -4 0 -3 0 -3...
result:
wrong answer Duplicated points on polyline 1.