QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#724319 | #9252. Penguins in Refrigerator | maspy | AC ✓ | 1541ms | 200064kb | C++23 | 43.4kb | 2024-11-08 11:59:33 | 2024-11-08 11:59:34 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/alg/monoid/min.hpp"
template <typename E>
struct Monoid_Min {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
static constexpr X unit() { return infty<E>; }
static constexpr bool commute = true;
};
#line 2 "/home/maspy/compro/library/alg/monoid/max.hpp"
template <typename E>
struct Monoid_Max {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); }
static constexpr X unit() { return -infty<E>; }
static constexpr bool commute = true;
};
#line 2 "/home/maspy/compro/library/ds/splaytree/splaytree.hpp"
/*
update でちゃんと prod が計算されてくれれば prod は op(lprod,x,rprod) でなくてもよい.
*/
// Node 型を別に定義して使う
template <typename Node>
struct SplayTree {
Node *pool;
const int NODES;
int pid;
using np = Node *;
using X = typename Node::value_type;
using A = typename Node::operator_type;
vc<np> FREE;
SplayTree(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; }
~SplayTree() { delete[] pool; }
void free_subtree(np c) {
if (!c) return;
auto dfs = [&](auto &dfs, np c) -> void {
if (c->l) dfs(dfs, c->l);
if (c->r) dfs(dfs, c->r);
FREE.eb(c);
};
dfs(dfs, c);
}
void reset() {
pid = 0;
FREE.clear();
}
np new_root() { return nullptr; }
np new_node(const X &x) {
assert(!FREE.empty() || pid < NODES);
np n = (FREE.empty() ? &(pool[pid++]) : POP(FREE));
Node::new_node(n, x);
return n;
}
np new_node(const vc<X> &dat) {
auto dfs = [&](auto &dfs, int l, int r) -> np {
if (l == r) return nullptr;
if (r == l + 1) return new_node(dat[l]);
int m = (l + r) / 2;
np l_root = dfs(dfs, l, m);
np r_root = dfs(dfs, m + 1, r);
np root = new_node(dat[m]);
root->l = l_root, root->r = r_root;
if (l_root) l_root->p = root;
if (r_root) r_root->p = root;
root->update();
return root;
};
return dfs(dfs, 0, len(dat));
}
u32 get_size(np root) { return (root ? root->size : 0); }
np merge(np l_root, np r_root) {
if (!l_root) return r_root;
if (!r_root) return l_root;
assert((!l_root->p) && (!r_root->p));
splay_kth(r_root, 0); // splay したので prop 済
r_root->l = l_root;
l_root->p = r_root;
r_root->update();
return r_root;
}
np merge3(np a, np b, np c) { return merge(merge(a, b), c); }
np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); }
pair<np, np> split(np root, u32 k) {
assert(!root || !root->p);
if (k == 0) return {nullptr, root};
if (k == (root->size)) return {root, nullptr};
splay_kth(root, k - 1);
np right = root->r;
root->r = nullptr, right->p = nullptr;
root->update();
return {root, right};
}
tuple<np, np, np> split3(np root, u32 l, u32 r) {
np nm, nr;
tie(root, nr) = split(root, r);
tie(root, nm) = split(root, l);
return {root, nm, nr};
}
tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) {
np d;
tie(root, d) = split(root, k);
auto [a, b, c] = split3(root, i, j);
return {a, b, c, d};
}
// 部分木が区間 [l,r) に対応するようなノードを作って返す
// そのノードが root になるわけではないので、
// このノードを参照した後にすぐに splay して根に持ち上げること
void goto_between(np &root, u32 l, u32 r) {
if (l == 0 && r == root->size) return;
if (l == 0) {
splay_kth(root, r);
root = root->l;
return;
}
if (r == root->size) {
splay_kth(root, l - 1);
root = root->r;
return;
}
splay_kth(root, r);
np rp = root;
root = rp->l;
root->p = nullptr;
splay_kth(root, l - 1);
root->p = rp;
rp->l = root;
rp->update();
root = root->r;
}
vc<X> get_all(const np &root) {
vc<X> res;
auto dfs = [&](auto &dfs, np root) -> void {
if (!root) return;
root->prop();
dfs(dfs, root->l);
res.eb(root->get());
dfs(dfs, root->r);
};
dfs(dfs, root);
return res;
}
X get(np &root, u32 k) {
assert(root == nullptr || !root->p);
splay_kth(root, k);
return root->get();
}
void set(np &root, u32 k, const X &x) {
assert(root != nullptr && !root->p);
splay_kth(root, k);
root->set(x);
}
void multiply(np &root, u32 k, const X &x) {
assert(root != nullptr && !root->p);
splay_kth(root, k);
root->multiply(x);
}
X prod(np &root, u32 l, u32 r) {
assert(root == nullptr || !root->p);
using Mono = typename Node::Monoid_X;
if (l == r) return Mono::unit();
assert(0 <= l && l < r && r <= root->size);
goto_between(root, l, r);
X res = root->prod;
splay(root, true);
return res;
}
X prod(np &root) {
assert(root == nullptr || !root->p);
using Mono = typename Node::Monoid_X;
return (root ? root->prod : Mono::unit());
}
void apply(np &root, u32 l, u32 r, const A &a) {
if (l == r) return;
assert(0 <= l && l < r && r <= root->size);
goto_between(root, l, r);
root->apply(a);
splay(root, true);
}
void apply(np &root, const A &a) {
if (!root) return;
root->apply(a);
}
void reverse(np &root, u32 l, u32 r) {
assert(root == nullptr || !root->p);
if (l == r) return;
assert(0 <= l && l < r && r <= root->size);
goto_between(root, l, r);
root->reverse();
splay(root, true);
}
void reverse(np root) {
if (!root) return;
root->reverse();
}
void rotate(Node *n) {
// n を根に近づける。prop, update は rotate の外で行う。
Node *pp, *p, *c;
p = n->p;
pp = p->p;
if (p->l == n) {
c = n->r;
n->r = p;
p->l = c;
} else {
c = n->l;
n->l = p;
p->r = c;
}
if (pp && pp->l == p) pp->l = n;
if (pp && pp->r == p) pp->r = n;
n->p = pp;
p->p = n;
if (c) c->p = p;
}
void prop_from_root(np c) {
if (!c->p) {
c->prop();
return;
}
prop_from_root(c->p);
c->prop();
}
void splay(Node *me, bool prop_from_root_done) {
// これを呼ぶ時点で、me の祖先(me を除く)は既に prop 済であることを仮定
// 特に、splay 終了時点で me は upd / prop 済である
if (!prop_from_root_done) prop_from_root(me);
me->prop();
while (me->p) {
np p = me->p;
np pp = p->p;
if (!pp) {
rotate(me);
p->update();
break;
}
bool same = (p->l == me && pp->l == p) || (p->r == me && pp->r == p);
if (same) rotate(p), rotate(me);
if (!same) rotate(me), rotate(me);
pp->update(), p->update();
}
// me の update は最後だけでよい
me->update();
}
void splay_kth(np &root, u32 k) {
assert(0 <= k && k < (root->size));
while (1) {
root->prop();
u32 sl = (root->l ? root->l->size : 0);
if (k == sl) break;
if (k < sl)
root = root->l;
else {
k -= sl + 1;
root = root->r;
}
}
splay(root, true);
}
// check(x), 左側のノード全体が check を満たすように切る
template <typename F>
pair<np, np> split_max_right(np root, F check) {
if (!root) return {nullptr, nullptr};
assert(!root->p);
np c = find_max_right(root, check);
if (!c) {
splay(root, true);
return {nullptr, root};
}
splay(c, true);
np right = c->r;
if (!right) return {c, nullptr};
right->p = nullptr;
c->r = nullptr;
c->update();
return {c, right};
}
// check(x, cnt), 左側のノード全体が check を満たすように切る
template <typename F>
pair<np, np> split_max_right_cnt(np root, F check) {
if (!root) return {nullptr, nullptr};
assert(!root->p);
np c = find_max_right_cnt(root, check);
if (!c) {
splay(root, true);
return {nullptr, root};
}
splay(c, true);
np right = c->r;
if (!right) return {c, nullptr};
right->p = nullptr;
c->r = nullptr;
c->update();
return {c, right};
}
// 左側のノード全体の prod が check を満たすように切る
template <typename F>
pair<np, np> split_max_right_prod(np root, F check) {
if (!root) return {nullptr, nullptr};
assert(!root->p);
np c = find_max_right_prod(root, check);
if (!c) {
splay(root, true);
return {nullptr, root};
}
splay(c, true);
np right = c->r;
if (!right) return {c, nullptr};
right->p = nullptr;
c->r = nullptr;
c->update();
return {c, right};
}
template <typename F>
np find_max_right(np root, const F &check) {
// 最後に見つけた ok の点、最後に探索した点
np last_ok = nullptr, last = nullptr;
while (root) {
last = root;
root->prop();
if (check(root->x)) {
last_ok = root;
root = root->r;
} else {
root = root->l;
}
}
splay(last, true);
return last_ok;
}
template <typename F>
np find_max_right_cnt(np root, const F &check) {
// 最後に見つけた ok の点、最後に探索した点
np last_ok = nullptr, last = nullptr;
ll n = 0;
while (root) {
last = root;
root->prop();
ll ns = (root->l ? root->l->size : 0);
if (check(root->x, n + ns + 1)) {
last_ok = root;
n += ns + 1;
root = root->r;
} else {
root = root->l;
}
}
splay(last, true);
return last_ok;
}
template <typename F>
np find_max_right_prod(np root, const F &check) {
using Mono = typename Node::Monoid_X;
X prod = Mono::unit();
// 最後に見つけた ok の点、最後に探索した点
np last_ok = nullptr, last = nullptr;
while (root) {
last = root;
root->prop();
np tmp = root->r;
root->r = nullptr;
root->update();
X lprod = Mono::op(prod, root->prod);
root->r = tmp;
root->update();
if (check(lprod)) {
prod = lprod;
last_ok = root;
root = root->r;
} else {
root = root->l;
}
}
splay(last, true);
return last_ok;
}
};
#line 2 "/home/maspy/compro/library/ds/splaytree/splaytree_commutative_monoid.hpp"
namespace SplayTreeNodes {
template <typename Monoid>
struct Node_CM {
using Monoid_X = Monoid;
using X = typename Monoid::value_type;
using value_type = X;
using operator_type = int; // 定義だけしておく
using np = Node_CM *;
np p, l, r;
X x, prod;
u32 size;
bool rev;
static void new_node(np n, const X &x) {
n->p = n->l = n->r = nullptr;
n->x = n->prod = x;
n->size = 1;
n->rev = 0;
}
void update() {
size = 1;
prod = x;
if (l) {
size += l->size;
prod = Monoid::op(l->prod, prod);
}
if (r) {
size += r->size;
prod = Monoid::op(prod, r->prod);
}
}
void prop() {
if (rev) {
if (l) {
l->rev ^= 1;
swap(l->l, l->r);
}
if (r) {
r->rev ^= 1;
swap(r->l, r->r);
}
rev = 0;
}
}
// update, prop 以外で呼ばれるものは、splay 後であることが想定されている。
// したがってその時点で update, prop 済であることを仮定してよい。
X get() { return x; }
void set(const X &xx) {
x = xx;
update();
}
void multiply(const X &xx) {
x = Monoid::op(x, xx);
update();
}
void reverse() {
swap(l, r);
rev ^= 1;
}
};
template <typename Monoid>
using SplayTree_Commutative_Monoid = SplayTree<Node_CM<Monoid>>;
} // namespace SplayTreeNodes
using SplayTreeNodes::SplayTree_Commutative_Monoid;
#line 2 "/home/maspy/compro/library/ds/segtree/segtree.hpp"
template <class Monoid>
struct SegTree {
using MX = Monoid;
using X = typename MX::value_type;
using value_type = X;
vc<X> dat;
int n, log, size;
SegTree() {}
SegTree(int n) { build(n); }
template <typename F>
SegTree(int n, F f) {
build(n, f);
}
SegTree(const vc<X>& v) { build(v); }
void build(int m) {
build(m, [](int i) -> X { return MX::unit(); });
}
void build(const vc<X>& v) {
build(len(v), [&](int i) -> X { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m, log = 1;
while ((1 << log) < n) ++log;
size = 1 << log;
dat.assign(size << 1, MX::unit());
FOR(i, n) dat[size + i] = f(i);
FOR_R(i, 1, size) update(i);
}
X get(int i) { return dat[size + i]; }
vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; }
void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }
void set(int i, const X& x) {
assert(i < n);
dat[i += size] = x;
while (i >>= 1) update(i);
}
void multiply(int i, const X& x) {
assert(i < n);
i += size;
dat[i] = Monoid::op(dat[i], x);
while (i >>= 1) update(i);
}
X prod(int L, int R) {
assert(0 <= L && L <= R && R <= n);
X vl = Monoid::unit(), vr = Monoid::unit();
L += size, R += size;
while (L < R) {
if (L & 1) vl = Monoid::op(vl, dat[L++]);
if (R & 1) vr = Monoid::op(dat[--R], vr);
L >>= 1, R >>= 1;
}
return Monoid::op(vl, vr);
}
X prod_all() { return dat[1]; }
template <class F>
int max_right(F check, int L) {
assert(0 <= L && L <= n && check(Monoid::unit()));
if (L == n) return n;
L += size;
X sm = Monoid::unit();
do {
while (L % 2 == 0) L >>= 1;
if (!check(Monoid::op(sm, dat[L]))) {
while (L < size) {
L = 2 * L;
if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); }
}
return L - size;
}
sm = Monoid::op(sm, dat[L++]);
} while ((L & -L) != L);
return n;
}
template <class F>
int min_left(F check, int R) {
assert(0 <= R && R <= n && check(Monoid::unit()));
if (R == 0) return 0;
R += size;
X sm = Monoid::unit();
do {
--R;
while (R > 1 && (R % 2)) R >>= 1;
if (!check(Monoid::op(dat[R], sm))) {
while (R < size) {
R = 2 * R + 1;
if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); }
}
return R + 1 - size;
}
sm = Monoid::op(dat[R], sm);
} while ((R & -R) != R);
return 0;
}
// prod_{l<=i<r} A[i xor x]
X xor_prod(int l, int r, int xor_val) {
static_assert(Monoid::commute);
X x = Monoid::unit();
for (int k = 0; k < log + 1; ++k) {
if (l >= r) break;
if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
l /= 2, r /= 2, xor_val /= 2;
}
return x;
}
};
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/ds/fenwicktree/fenwicktree_01.hpp"
#line 2 "/home/maspy/compro/library/alg/monoid/add.hpp"
template <typename E>
struct Monoid_Add {
using X = E;
using value_type = X;
static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
static constexpr X inverse(const X &x) noexcept { return -x; }
static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
static constexpr X unit() { return X(0); }
static constexpr bool commute = true;
};
#line 3 "/home/maspy/compro/library/ds/fenwicktree/fenwicktree.hpp"
template <typename Monoid>
struct FenwickTree {
using G = Monoid;
using MX = Monoid;
using E = typename G::value_type;
int n;
vector<E> dat;
E total;
FenwickTree() {}
FenwickTree(int n) { build(n); }
template <typename F>
FenwickTree(int n, F f) {
build(n, f);
}
FenwickTree(const vc<E>& v) { build(v); }
void build(int m) {
n = m;
dat.assign(m, G::unit());
total = G::unit();
}
void build(const vc<E>& v) {
build(len(v), [&](int i) -> E { return v[i]; });
}
template <typename F>
void build(int m, F f) {
n = m;
dat.clear();
dat.reserve(n);
total = G::unit();
FOR(i, n) { dat.eb(f(i)); }
for (int i = 1; i <= n; ++i) {
int j = i + (i & -i);
if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
}
total = prefix_sum(m);
}
E prod_all() { return total; }
E sum_all() { return total; }
E sum(int k) { return prefix_sum(k); }
E prod(int k) { return prefix_prod(k); }
E prefix_sum(int k) { return prefix_prod(k); }
E prefix_prod(int k) {
chmin(k, n);
E ret = G::unit();
for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
return ret;
}
E sum(int L, int R) { return prod(L, R); }
E prod(int L, int R) {
chmax(L, 0), chmin(R, n);
if (L == 0) return prefix_prod(R);
assert(0 <= L && L <= R && R <= n);
E pos = G::unit(), neg = G::unit();
while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
return G::op(pos, G::inverse(neg));
}
vc<E> get_all() {
vc<E> res(n);
FOR(i, n) res[i] = prod(i, i + 1);
return res;
}
void add(int k, E x) { multiply(k, x); }
void multiply(int k, E x) {
static_assert(G::commute);
total = G::op(total, x);
for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
}
void set(int k, E x) { add(k, G::op(G::inverse(prod(k, k + 1)), x)); }
template <class F>
int max_right(const F check, int L = 0) {
assert(check(G::unit()));
E s = G::unit();
int i = L;
// 2^k 進むとダメ
int k = [&]() {
while (1) {
if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
if (i == 0) { return topbit(n) + 1; }
int k = lowbit(i) - 1;
if (i + (1 << k) > n) return k;
E t = G::op(s, dat[i + (1 << k) - 1]);
if (!check(t)) { return k; }
s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
}
}();
while (k) {
--k;
if (i + (1 << k) - 1 < len(dat)) {
E t = G::op(s, dat[i + (1 << k) - 1]);
if (check(t)) { i += (1 << k), s = t; }
}
}
return i;
}
// check(i, x)
template <class F>
int max_right_with_index(const F check, int L = 0) {
assert(check(L, G::unit()));
E s = G::unit();
int i = L;
// 2^k 進むとダメ
int k = [&]() {
while (1) {
if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
if (i == 0) { return topbit(n) + 1; }
int k = lowbit(i) - 1;
if (i + (1 << k) > n) return k;
E t = G::op(s, dat[i + (1 << k) - 1]);
if (!check(i + (1 << k), t)) { return k; }
s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
}
}();
while (k) {
--k;
if (i + (1 << k) - 1 < len(dat)) {
E t = G::op(s, dat[i + (1 << k) - 1]);
if (check(i + (1 << k), t)) { i += (1 << k), s = t; }
}
}
return i;
}
template <class F>
int min_left(const F check, int R) {
assert(check(G::unit()));
E s = G::unit();
int i = R;
// false になるところまで戻る
int k = 0;
while (i > 0 && check(s)) {
s = G::op(s, dat[i - 1]);
k = lowbit(i);
i -= i & -i;
}
if (check(s)) {
assert(i == 0);
return 0;
}
// 2^k 進むと ok になる
// false を維持して進む
while (k) {
--k;
E t = G::op(s, G::inverse(dat[i + (1 << k) - 1]));
if (!check(t)) { i += (1 << k), s = t; }
}
return i + 1;
}
int kth(E k, int L = 0) {
return max_right([&k](E x) -> bool { return x <= k; }, L);
}
};
#line 4 "/home/maspy/compro/library/ds/fenwicktree/fenwicktree_01.hpp"
struct FenwickTree_01 {
int N, n;
vc<u64> dat;
FenwickTree<Monoid_Add<int>> bit;
FenwickTree_01() {}
FenwickTree_01(int n) { build(n); }
template <typename F>
FenwickTree_01(int n, F f) {
build(n, f);
}
void build(int m) {
N = m;
n = ceil<int>(N + 1, 64);
dat.assign(n, u64(0));
bit.build(n);
}
template <typename F>
void build(int m, F f) {
N = m;
n = ceil<int>(N + 1, 64);
dat.assign(n, u64(0));
FOR(i, N) { dat[i / 64] |= u64(f(i)) << (i % 64); }
bit.build(n, [&](int i) -> int { return popcnt(dat[i]); });
}
int sum_all() { return bit.sum_all(); }
int sum(int k) { return prefix_sum(k); }
int prefix_sum(int k) {
int ans = bit.sum(k / 64);
ans += popcnt(dat[k / 64] & ((u64(1) << (k % 64)) - 1));
return ans;
}
int sum(int L, int R) {
if (L == 0) return prefix_sum(R);
int ans = 0;
ans -= popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1));
ans += popcnt(dat[R / 64] & ((u64(1) << (R % 64)) - 1));
ans += bit.sum(L / 64, R / 64);
return ans;
}
void add(int k, int x) {
if (x == 1) add(k);
if (x == -1) remove(k);
}
void add(int k) {
dat[k / 64] |= u64(1) << (k % 64);
bit.add(k / 64, 1);
}
void remove(int k) {
dat[k / 64] &= ~(u64(1) << (k % 64));
bit.add(k / 64, -1);
}
int kth(int k, int L = 0) {
if (k >= sum_all()) return N;
k += popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1));
L /= 64;
int mid = 0;
auto check = [&](auto e) -> bool {
if (e <= k) chmax(mid, e);
return e <= k;
};
int idx = bit.max_right(check, L);
if (idx == n) return N;
k -= mid;
u64 x = dat[idx];
int p = popcnt(x);
if (p <= k) return N;
k = binary_search([&](int n) -> bool { return (p - popcnt(x >> n)) <= k; },
0, 64, 0);
return 64 * idx + k;
}
int next(int k) {
int idx = k / 64;
k %= 64;
u64 x = dat[idx] & ~((u64(1) << k) - 1);
if (x) return 64 * idx + lowbit(x);
idx = bit.kth(0, idx + 1);
if (idx == n || !dat[idx]) return N;
return 64 * idx + lowbit(dat[idx]);
}
int prev(int k) {
if (k == N) --k;
int idx = k / 64;
k %= 64;
u64 x = dat[idx];
if (k < 63) x &= (u64(1) << (k + 1)) - 1;
if (x) return 64 * idx + topbit(x);
idx = bit.min_left([&](auto e) -> bool { return e <= 0; }, idx) - 1;
if (idx == -1) return -1;
return 64 * idx + topbit(dat[idx]);
}
};
#line 11 "main.cpp"
using mint = modint107;
void solve() {
LL(N, K);
VEC(int, P, N);
VEC(int, W, N);
{
// FOR(i, N) who[P[i] - 1] = i;
vc<int> who = P;
for (auto& x: who) --x;
reverse(all(who));
vc<int> tmp(N);
FOR(i, N) tmp[i] = W[who[i]];
swap(P, who);
swap(W, tmp);
for (auto& x: P) ++x;
}
SHOW(P);
SHOW(W);
SplayTree_Commutative_Monoid<Monoid_Max<int>> ST(N);
using np = decltype(ST)::np;
SegTree<Monoid_Min<int>> seg_min(W);
SegTree<Monoid_Max<int>> seg_max(W);
FenwickTree_01 bit(N, [&](int i) -> int { return 1; });
auto dfs = [&](auto& dfs, int L, int R) -> pair<mint, np> {
int cnt = bit.sum(L, R);
if (cnt == 0) { return {mint(1), nullptr}; }
int mi = seg_min.prod(L, R);
int ma = seg_max.prod(L, R);
if (mi + ma <= K) {
int idx = seg_min.max_right([&](auto e) -> bool { return e > mi; }, L);
assert(W[idx] == mi);
seg_min.set(idx, infty<int>);
seg_max.set(idx, -infty<int>);
bit.remove(idx);
auto [ans, root] = dfs(dfs, L, R);
ans *= cnt;
auto [X, Y] = ST.split_max_right_prod(root, [&](auto e) -> bool { return e < P[idx]; });
root = ST.merge3(X, ST.new_node(P[idx]), Y);
SHOW(ST.get_all(root));
return {ans, root};
}
// max は動かない
int idx = seg_max.max_right([&](auto e) -> bool { return e < ma; }, L);
assert(W[idx] == ma);
auto [x1, r1] = dfs(dfs, L, idx);
auto [x2, r2] = dfs(dfs, idx + 1, R);
np root = ST.merge3(r1, ST.new_node(P[idx]), r2);
SHOW(ST.get_all(root));
return {x1 * x2, root};
};
auto [ans, root] = dfs(dfs, 0, N);
vc<int> ANS = ST.get_all(root);
print(ans);
print(ANS);
}
signed main() { solve(); }
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3672kb
input:
5 10 1 2 3 4 5 6 5 3 9 2
output:
3 5 4 2 1 3
result:
ok 2 lines
Test #2:
score: 0
Accepted
time: 0ms
memory: 3528kb
input:
5 10 1 2 3 4 5 2 4 3 3 8
output:
30 1 5 2 3 4
result:
ok 2 lines
Test #3:
score: 0
Accepted
time: 0ms
memory: 3600kb
input:
5 10 1 2 3 4 5 2 3 4 5 1
output:
120 1 2 3 4 5
result:
ok 2 lines
Test #4:
score: 0
Accepted
time: 0ms
memory: 3880kb
input:
5 10 1 2 3 4 5 2 3 4 5 6
output:
60 1 2 3 5 4
result:
ok 2 lines
Test #5:
score: 0
Accepted
time: 100ms
memory: 23788kb
input:
100000 96 1996 78922 45321 68844 32404 82013 66552 81163 17216 48170 35495 56660 13480 43118 23173 47257 50168 87069 26167 67231 31758 25694 61063 56642 8923 7727 54528 96554 38964 7604 6822 16256 45300 58869 31359 48638 87645 14779 81505 59585 89293 9291 7002 31810 84701 77648 78295 42595 11394 479...
output:
457992974 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10...
result:
ok 2 lines
Test #6:
score: 0
Accepted
time: 29ms
memory: 11388kb
input:
100000 84 93330 3894 94859 22134 49668 30606 26739 82976 76701 56323 75537 7626 87226 20857 98177 21811 70827 75898 8111 48223 26186 64222 63002 79024 19126 41638 1048 43857 25379 19764 60207 27675 77665 66327 6274 34861 30287 13449 64505 51490 5804 65843 49014 85795 12365 31565 34411 71697 66568 28...
output:
524727018 1723 2800 15421 26278 31659 42502 42606 56945 60694 62369 70160 73990 80586 88502 89122 59690 27661 33622 94788 14089 1146 2690 3632 4491 5439 8588 17476 17922 18136 20123 24857 39523 18825 28520 30999 32947 36013 41413 43842 43919 54502 58104 60783 65767 69064 71878 74728 75343 76546 7807...
result:
ok 2 lines
Test #7:
score: 0
Accepted
time: 23ms
memory: 11160kb
input:
100000 87 300 88662 44078 62834 3753 7407 33249 23452 84415 76976 83633 97611 16701 2788 75559 56876 65161 78422 41095 40238 89019 95291 81242 34629 35820 2766 266 62909 53458 60609 92867 7751 43644 89656 46268 73554 29490 91474 42521 66646 22973 36675 3527 66659 6283 65870 56067 93748 94932 45445 3...
output:
474454223 16291 67920 66350 36657 80297 50836 75962 67504 74275 82684 44748 18794 20817 23451 67820 94633 35098 26272 62387 64130 97543 95388 6171 41925 9995 21720 51796 81891 29780 53247 63390 78398 10287 31830 44454 46864 63394 76771 87042 17437 8412 58246 18774 97383 36854 4632 32575 64180 48940 ...
result:
ok 2 lines
Test #8:
score: 0
Accepted
time: 18ms
memory: 11152kb
input:
100000 100 55629 14377 79945 51098 90204 3853 3177 32017 78776 91382 20382 74435 13483 67713 43513 69929 15961 6388 48752 94868 14114 90543 87776 22290 94148 14665 67822 15542 37889 31214 53405 58817 74349 80153 50913 24099 84889 86056 59976 40327 59231 97231 45030 99883 57171 7168 60283 46638 6697 ...
output:
12361691 68929 26283 16078 8426 80994 89031 90845 85691 11489 83714 218 43955 79942 49055 15944 46958 3923 50718 51881 87716 91070 33513 46064 56932 23620 95805 36252 61014 77254 96568 40681 51389 15855 70350 42900 63333 35239 73615 3271 20950 31494 86984 66093 18145 50335 78044 93515 60899 73400 82...
result:
ok 2 lines
Test #9:
score: 0
Accepted
time: 125ms
memory: 78040kb
input:
1000000 81 505338 916424 583795 203566 617115 482998 227468 356473 312485 334132 3363 907091 837133 257003 855999 78795 363135 170084 379933 348671 686 989733 970073 613993 760088 594394 96392 386305 559944 490393 934509 798454 875291 431076 978853 472290 445607 906742 260667 85265 928267 662293 850...
output:
1 434417 227927 721379 881382 991471 289735 100004 760754 181792 283705 493486 797104 785634 77915 488388 580313 676447 601952 699628 15819 730688 550717 818459 115930 718996 87059 278519 341770 205766 196170 470043 729232 605060 297713 562576 502884 205091 63073 969512 719434 832742 262524 893809 1...
result:
ok 2 lines
Test #10:
score: 0
Accepted
time: 1541ms
memory: 199868kb
input:
1000000 855853371 671882 962935 236810 309323 731542 936655 349551 915671 728370 235701 940712 512459 431213 624267 374020 458688 149286 146845 938189 496488 78945 50430 630392 695360 119964 195349 284330 320026 415129 675618 454235 401145 366361 129120 527400 159031 540788 688684 238547 914676 4502...
output:
641102369 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10...
result:
ok 2 lines
Test #11:
score: 0
Accepted
time: 267ms
memory: 75100kb
input:
1000000 957571370 997755 236289 938217 183949 245742 901546 815337 293623 483897 447597 648079 8259 601800 328449 705646 550681 971772 635040 983132 321434 297617 994716 277334 407243 7535 441861 630008 322245 4749 622934 40122 595912 610078 418322 792502 659098 981324 115306 196723 995928 653988 12...
output:
196613543 8666 50188 54027 60170 63101 84940 100746 141072 144773 162176 166539 180410 188742 200350 233463 289011 294968 327822 361963 362045 365360 373782 378529 384683 395814 400565 412249 426607 451013 453497 486792 500299 501563 503029 527962 532266 540692 549841 554433 555692 578207 587245 309...
result:
ok 2 lines
Test #12:
score: 0
Accepted
time: 230ms
memory: 74988kb
input:
1000000 808170131 271560 789245 8943 714638 700264 418823 975445 476711 934265 77678 944870 858155 812771 462154 715736 742621 689488 193610 115853 883249 687845 531685 22131 29384 772945 176972 630084 675971 609450 488597 55786 781720 208081 97123 810367 722365 957655 302332 328957 621208 772189 13...
output:
895770364 317901 376287 641310 859340 960574 246282 32177 63684 239374 534359 591735 937287 666444 303601 764716 947219 395979 508421 750441 254676 911202 958056 390533 229585 58162 164836 431844 141305 315803 837011 504379 224738 955205 725934 375706 607486 356819 809721 739670 841619 94497 132028 ...
result:
ok 2 lines
Test #13:
score: 0
Accepted
time: 181ms
memory: 75092kb
input:
1000000 921697697 510869 325175 912287 76200 267946 196566 280254 478297 605706 422740 294586 757231 806399 421000 946945 826982 892384 94539 164635 669191 29701 283479 197248 916663 922217 873836 641086 135377 885683 938021 917652 415210 386341 909867 104726 417411 584785 221653 310404 785946 50749...
output:
26397744 74052 75686 286379 558067 712866 718029 252642 343310 883971 933200 675850 374677 702925 390886 401806 477880 946457 507454 556609 989214 824674 229271 993468 83455 325821 841962 264526 937152 604811 350821 64736 839110 135921 138196 177501 182090 302505 432962 394141 130562 190620 673567 6...
result:
ok 2 lines
Test #14:
score: 0
Accepted
time: 144ms
memory: 74996kb
input:
1000000 715224327 142757 848503 196089 967433 276363 163311 39090 467040 906998 624415 676126 894650 38094 559122 446718 948581 878403 60954 92732 411351 351153 714086 588966 236003 874560 356838 655429 454326 560887 554779 336553 360512 278255 146227 122609 258837 216395 166347 171148 428705 503848...
output:
1 725711 716862 11272 806976 86234 607909 475197 584372 220750 864835 838750 461136 764052 271663 669608 748849 409237 373833 186301 795042 393152 944766 681020 322478 634634 83655 132769 255523 171009 76865 331567 528132 604856 695065 448208 571548 792572 672111 366853 662995 271629 290686 208575 6...
result:
ok 2 lines
Test #15:
score: 0
Accepted
time: 460ms
memory: 199844kb
input:
1000000 94 732832 824385 80610 86380 900983 71723 382380 222054 46533 243003 730000 214251 629211 759027 143920 743196 524310 386215 709124 626379 243508 147769 169616 933797 641552 946395 522265 454896 746806 938530 413949 141576 266714 374723 1495 258 168689 853795 224890 348364 423101 547355 5811...
output:
252663062 690724 825394 618011 650249 818303 780516 332481 422142 541930 407558 699031 214758 536840 93081 21770 691395 456753 679385 367716 146074 339496 267083 728487 615334 820251 927249 839952 270754 978023 753557 637125 194906 288004 57599 382228 165457 5302 51851 266756 856409 96240 396272 772...
result:
ok 2 lines
Test #16:
score: 0
Accepted
time: 719ms
memory: 138208kb
input:
1000000 99 4178 931168 210242 561422 957522 950349 621494 299138 694428 890073 99566 860399 156939 334289 910642 663741 564875 3797 266989 298372 8263 239639 317861 861704 300698 651181 757530 817042 394445 640956 346401 919687 759026 618445 316528 525462 556450 334906 489721 491750 160475 328418 13...
output:
269552242 2 3 6 10 11 12 15 18 19 20 22 23 27 29 31 33 34 36 38 40 41 44 45 46 48 49 52 57 58 65 67 72 78 80 82 86 89 90 93 95 98 101 102 103 105 107 110 111 114 121 122 123 124 131 132 134 135 137 139 141 143 148 150 151 152 153 154 156 158 161 163 168 171 172 175 176 178 179 180 181 182 184 185 18...
result:
ok 2 lines
Test #17:
score: 0
Accepted
time: 319ms
memory: 200064kb
input:
1000000 679929501 431235 713814 338483 357970 405842 135564 380661 689063 57872 235545 998283 670897 983715 925773 641244 560970 617441 53369 498534 684410 801204 82176 525998 897028 655245 349349 493440 220184 679407 630370 788841 408291 588088 119206 530508 818552 233973 205211 783475 441990 81557...
output:
90834237 945608 308957 338483 357970 405842 431235 533573 520937 135564 713814 795172 78109 230636 57872 288313 380661 689063 704210 742417 235545 569766 153750 78467 93184 7048 560970 641244 670897 679126 53369 498534 617441 925773 965193 79342 82176 153413 525998 684410 801204 888127 831640 873801...
result:
ok 2 lines
Test #18:
score: 0
Accepted
time: 841ms
memory: 200004kb
input:
1000000 944684390 431758 595986 647848 934626 598354 501964 160568 865807 884677 189702 952713 354306 594455 802759 2925 255255 786404 831306 765610 462575 874583 940337 346756 349911 600185 567394 308185 139400 353002 134598 220481 946992 401849 16154 228662 4829 321208 819516 189029 907104 858106 ...
output:
413077381 3 5 6 7 9 12 13 15 16 17 18 19 24 25 26 27 33 36 47 48 49 50 51 52 58 59 61 63 64 67 68 69 70 71 72 73 76 77 83 86 90 94 96 97 99 100 101 102 104 107 111 112 113 114 116 118 121 125 128 129 132 134 136 137 139 140 141 144 146 148 150 154 156 159 160 161 164 167 169 170 176 180 181 183 184 ...
result:
ok 2 lines
Test #19:
score: 0
Accepted
time: 370ms
memory: 88520kb
input:
1000000 93 179362 643184 734387 352388 344737 683812 150908 734803 283731 861889 157277 667401 249449 936820 160643 245780 802361 548408 54020 196140 477358 892136 583310 976438 486205 869087 657774 100483 925805 545771 268088 739613 204989 314998 147901 833469 428883 598222 688822 715899 624252 711...
output:
649477896 743293 690435 806179 511990 66335 717075 672042 466379 437096 310711 708584 445599 845658 139793 108 606294 199490 224868 336249 864261 145793 85502 619896 336270 330976 37172 453848 674426 26285 602579 608503 157048 654945 697812 870059 554588 202907 386285 628924 258521 157543 495310 455...
result:
ok 2 lines
Test #20:
score: 0
Accepted
time: 517ms
memory: 82644kb
input:
1000000 89 763873 86573 338664 354196 319092 38927 977987 955089 478871 758325 773154 184439 622618 326940 126867 324496 638938 186905 232117 282792 774583 984603 909406 540709 760543 994501 918605 61027 727753 649927 525675 425349 835808 339017 655490 338632 296800 356304 106802 389609 519759 88460...
output:
495453129 9 18 24 33 50 98 108 109 115 123 142 145 160 167 192 202 247 263 265 273 282 284 293 299 317 341 349 369 384 395 397 414 454 468 472 521 535 598 624 635 658 672 675 701 745 785 840 849 865 906 912 929 971 989 1044 1055 1064 1067 1073 1077 1112 1168 1203 1234 1247 1300 1340 1345 1349 1356 1...
result:
ok 2 lines
Test #21:
score: 0
Accepted
time: 320ms
memory: 87400kb
input:
1000000 954116439 397122 450503 759501 993448 304543 151232 741427 445708 583640 17549 540946 234308 38425 850146 625997 537141 299596 179543 851541 187791 904041 585913 288015 642843 554913 981185 545912 133955 782367 794367 283629 755284 742811 231930 971747 907044 410110 748225 817955 202171 6494...
output:
158902557 742557 95024 192783 336749 610680 627229 557057 599709 704441 720844 784867 939681 331481 352285 996235 234674 350515 551624 686640 691029 298953 524839 752888 759211 900929 617117 61244 592764 824141 632676 508651 762462 69502 573369 771529 935997 35647 363552 641270 667815 746099 156513 ...
result:
ok 2 lines
Test #22:
score: 0
Accepted
time: 635ms
memory: 87452kb
input:
1000000 835747974 527060 411208 705253 658439 513158 582405 352991 161099 538587 243319 241504 94970 152928 682292 118342 377276 764212 93502 132399 994592 724092 141564 870994 931053 798419 777558 872180 830832 312291 394281 686471 865266 380480 14195 973089 544150 287133 12334 72439 555268 297243 ...
output:
838527552 16 31 38 42 65 71 81 140 145 159 160 174 242 395 400 401 404 419 421 449 483 523 534 537 553 593 599 651 654 663 676 685 701 716 741 753 778 779 787 789 796 817 841 852 854 871 891 898 899 909 915 945 953 962 968 1044 1063 1079 1105 1107 1118 1154 1192 1208 1243 1265 1274 1286 1315 1318 13...
result:
ok 2 lines
Test #23:
score: 0
Accepted
time: 0ms
memory: 3600kb
input:
8 10 1 7 6 4 3 8 5 2 2 7 3 1 3 7 5 7
output:
1680 1 2 3 4 5 8 6 7
result:
ok 2 lines
Test #24:
score: 0
Accepted
time: 0ms
memory: 3528kb
input:
8 10 3 6 5 2 1 7 4 8 6 9 7 10 1 6 4 2
output:
12 8 4 1 5 7 2 6 3
result:
ok 2 lines
Extra Test:
score: 0
Extra Test Passed