QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#724304#9252. Penguins in RefrigeratormaspyWA 97ms23860kbC++2343.4kb2024-11-08 11:52:282024-11-08 11:52:29

Judging History

你现在查看的是最新测评结果

  • [2024-11-08 11:52:29]
  • 评测
  • 测评结果:WA
  • 用时:97ms
  • 内存:23860kb
  • [2024-11-08 11:52:28]
  • 提交

answer

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/alg/monoid/min.hpp"

template <typename E>
struct Monoid_Min {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }
  static constexpr X unit() { return infty<E>; }
  static constexpr bool commute = true;
};
#line 2 "/home/maspy/compro/library/alg/monoid/max.hpp"

template <typename E>
struct Monoid_Max {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); }
  static constexpr X unit() { return -infty<E>; }
  static constexpr bool commute = true;
};
#line 2 "/home/maspy/compro/library/ds/splaytree/splaytree.hpp"

/*
update でちゃんと prod が計算されてくれれば prod は op(lprod,x,rprod) でなくてもよい.
*/

// Node 型を別に定義して使う
template <typename Node>
struct SplayTree {
  Node *pool;
  const int NODES;
  int pid;
  using np = Node *;
  using X = typename Node::value_type;
  using A = typename Node::operator_type;
  vc<np> FREE;

  SplayTree(int NODES) : NODES(NODES), pid(0) { pool = new Node[NODES]; }
  ~SplayTree() { delete[] pool; }

  void free_subtree(np c) {
    if (!c) return;
    auto dfs = [&](auto &dfs, np c) -> void {
      if (c->l) dfs(dfs, c->l);
      if (c->r) dfs(dfs, c->r);
      FREE.eb(c);
    };
    dfs(dfs, c);
  }

  void reset() {
    pid = 0;
    FREE.clear();
  }

  np new_root() { return nullptr; }

  np new_node(const X &x) {
    assert(!FREE.empty() || pid < NODES);
    np n = (FREE.empty() ? &(pool[pid++]) : POP(FREE));
    Node::new_node(n, x);
    return n;
  }

  np new_node(const vc<X> &dat) {
    auto dfs = [&](auto &dfs, int l, int r) -> np {
      if (l == r) return nullptr;
      if (r == l + 1) return new_node(dat[l]);
      int m = (l + r) / 2;
      np l_root = dfs(dfs, l, m);
      np r_root = dfs(dfs, m + 1, r);
      np root = new_node(dat[m]);
      root->l = l_root, root->r = r_root;
      if (l_root) l_root->p = root;
      if (r_root) r_root->p = root;
      root->update();
      return root;
    };
    return dfs(dfs, 0, len(dat));
  }

  u32 get_size(np root) { return (root ? root->size : 0); }

  np merge(np l_root, np r_root) {
    if (!l_root) return r_root;
    if (!r_root) return l_root;
    assert((!l_root->p) && (!r_root->p));
    splay_kth(r_root, 0); // splay したので prop 済
    r_root->l = l_root;
    l_root->p = r_root;
    r_root->update();
    return r_root;
  }
  np merge3(np a, np b, np c) { return merge(merge(a, b), c); }
  np merge4(np a, np b, np c, np d) { return merge(merge(merge(a, b), c), d); }

  pair<np, np> split(np root, u32 k) {
    assert(!root || !root->p);
    if (k == 0) return {nullptr, root};
    if (k == (root->size)) return {root, nullptr};
    splay_kth(root, k - 1);
    np right = root->r;
    root->r = nullptr, right->p = nullptr;
    root->update();
    return {root, right};
  }
  tuple<np, np, np> split3(np root, u32 l, u32 r) {
    np nm, nr;
    tie(root, nr) = split(root, r);
    tie(root, nm) = split(root, l);
    return {root, nm, nr};
  }
  tuple<np, np, np, np> split4(np root, u32 i, u32 j, u32 k) {
    np d;
    tie(root, d) = split(root, k);
    auto [a, b, c] = split3(root, i, j);
    return {a, b, c, d};
  }

  // 部分木が区間 [l,r) に対応するようなノードを作って返す
  // そのノードが root になるわけではないので、
  // このノードを参照した後にすぐに splay して根に持ち上げること
  void goto_between(np &root, u32 l, u32 r) {
    if (l == 0 && r == root->size) return;
    if (l == 0) {
      splay_kth(root, r);
      root = root->l;
      return;
    }
    if (r == root->size) {
      splay_kth(root, l - 1);
      root = root->r;
      return;
    }
    splay_kth(root, r);
    np rp = root;
    root = rp->l;
    root->p = nullptr;
    splay_kth(root, l - 1);
    root->p = rp;
    rp->l = root;
    rp->update();
    root = root->r;
  }

  vc<X> get_all(const np &root) {
    vc<X> res;
    auto dfs = [&](auto &dfs, np root) -> void {
      if (!root) return;
      root->prop();
      dfs(dfs, root->l);
      res.eb(root->get());
      dfs(dfs, root->r);
    };
    dfs(dfs, root);
    return res;
  }

  X get(np &root, u32 k) {
    assert(root == nullptr || !root->p);
    splay_kth(root, k);
    return root->get();
  }

  void set(np &root, u32 k, const X &x) {
    assert(root != nullptr && !root->p);
    splay_kth(root, k);
    root->set(x);
  }

  void multiply(np &root, u32 k, const X &x) {
    assert(root != nullptr && !root->p);
    splay_kth(root, k);
    root->multiply(x);
  }

  X prod(np &root, u32 l, u32 r) {
    assert(root == nullptr || !root->p);
    using Mono = typename Node::Monoid_X;
    if (l == r) return Mono::unit();
    assert(0 <= l && l < r && r <= root->size);
    goto_between(root, l, r);
    X res = root->prod;
    splay(root, true);
    return res;
  }

  X prod(np &root) {
    assert(root == nullptr || !root->p);
    using Mono = typename Node::Monoid_X;
    return (root ? root->prod : Mono::unit());
  }

  void apply(np &root, u32 l, u32 r, const A &a) {
    if (l == r) return;
    assert(0 <= l && l < r && r <= root->size);
    goto_between(root, l, r);
    root->apply(a);
    splay(root, true);
  }
  void apply(np &root, const A &a) {
    if (!root) return;
    root->apply(a);
  }

  void reverse(np &root, u32 l, u32 r) {
    assert(root == nullptr || !root->p);
    if (l == r) return;
    assert(0 <= l && l < r && r <= root->size);
    goto_between(root, l, r);
    root->reverse();
    splay(root, true);
  }
  void reverse(np root) {
    if (!root) return;
    root->reverse();
  }

  void rotate(Node *n) {
    // n を根に近づける。prop, update は rotate の外で行う。
    Node *pp, *p, *c;
    p = n->p;
    pp = p->p;
    if (p->l == n) {
      c = n->r;
      n->r = p;
      p->l = c;
    } else {
      c = n->l;
      n->l = p;
      p->r = c;
    }
    if (pp && pp->l == p) pp->l = n;
    if (pp && pp->r == p) pp->r = n;
    n->p = pp;
    p->p = n;
    if (c) c->p = p;
  }

  void prop_from_root(np c) {
    if (!c->p) {
      c->prop();
      return;
    }
    prop_from_root(c->p);
    c->prop();
  }

  void splay(Node *me, bool prop_from_root_done) {
    // これを呼ぶ時点で、me の祖先(me を除く)は既に prop 済であることを仮定
    // 特に、splay 終了時点で me は upd / prop 済である
    if (!prop_from_root_done) prop_from_root(me);
    me->prop();
    while (me->p) {
      np p = me->p;
      np pp = p->p;
      if (!pp) {
        rotate(me);
        p->update();
        break;
      }
      bool same = (p->l == me && pp->l == p) || (p->r == me && pp->r == p);
      if (same) rotate(p), rotate(me);
      if (!same) rotate(me), rotate(me);
      pp->update(), p->update();
    }
    // me の update は最後だけでよい
    me->update();
  }

  void splay_kth(np &root, u32 k) {
    assert(0 <= k && k < (root->size));
    while (1) {
      root->prop();
      u32 sl = (root->l ? root->l->size : 0);
      if (k == sl) break;
      if (k < sl)
        root = root->l;
      else {
        k -= sl + 1;
        root = root->r;
      }
    }
    splay(root, true);
  }

  // check(x), 左側のノード全体が check を満たすように切る
  template <typename F>
  pair<np, np> split_max_right(np root, F check) {
    if (!root) return {nullptr, nullptr};
    assert(!root->p);
    np c = find_max_right(root, check);
    if (!c) {
      splay(root, true);
      return {nullptr, root};
    }
    splay(c, true);
    np right = c->r;
    if (!right) return {c, nullptr};
    right->p = nullptr;
    c->r = nullptr;
    c->update();
    return {c, right};
  }

  // check(x, cnt), 左側のノード全体が check を満たすように切る
  template <typename F>
  pair<np, np> split_max_right_cnt(np root, F check) {
    if (!root) return {nullptr, nullptr};
    assert(!root->p);
    np c = find_max_right_cnt(root, check);
    if (!c) {
      splay(root, true);
      return {nullptr, root};
    }
    splay(c, true);
    np right = c->r;
    if (!right) return {c, nullptr};
    right->p = nullptr;
    c->r = nullptr;
    c->update();
    return {c, right};
  }

  // 左側のノード全体の prod が check を満たすように切る
  template <typename F>
  pair<np, np> split_max_right_prod(np root, F check) {
    if (!root) return {nullptr, nullptr};
    assert(!root->p);
    np c = find_max_right_prod(root, check);
    if (!c) {
      splay(root, true);
      return {nullptr, root};
    }
    splay(c, true);
    np right = c->r;
    if (!right) return {c, nullptr};
    right->p = nullptr;
    c->r = nullptr;
    c->update();
    return {c, right};
  }

  template <typename F>
  np find_max_right(np root, const F &check) {
    // 最後に見つけた ok の点、最後に探索した点
    np last_ok = nullptr, last = nullptr;
    while (root) {
      last = root;
      root->prop();
      if (check(root->x)) {
        last_ok = root;
        root = root->r;
      } else {
        root = root->l;
      }
    }
    splay(last, true);
    return last_ok;
  }

  template <typename F>
  np find_max_right_cnt(np root, const F &check) {
    // 最後に見つけた ok の点、最後に探索した点
    np last_ok = nullptr, last = nullptr;
    ll n = 0;
    while (root) {
      last = root;
      root->prop();
      ll ns = (root->l ? root->l->size : 0);
      if (check(root->x, n + ns + 1)) {
        last_ok = root;
        n += ns + 1;
        root = root->r;
      } else {
        root = root->l;
      }
    }
    splay(last, true);
    return last_ok;
  }

  template <typename F>
  np find_max_right_prod(np root, const F &check) {
    using Mono = typename Node::Monoid_X;
    X prod = Mono::unit();
    // 最後に見つけた ok の点、最後に探索した点
    np last_ok = nullptr, last = nullptr;
    while (root) {
      last = root;
      root->prop();
      np tmp = root->r;
      root->r = nullptr;
      root->update();
      X lprod = Mono::op(prod, root->prod);
      root->r = tmp;
      root->update();
      if (check(lprod)) {
        prod = lprod;
        last_ok = root;
        root = root->r;
      } else {
        root = root->l;
      }
    }
    splay(last, true);
    return last_ok;
  }
};
#line 2 "/home/maspy/compro/library/ds/splaytree/splaytree_commutative_monoid.hpp"

namespace SplayTreeNodes {
template <typename Monoid>
struct Node_CM {
  using Monoid_X = Monoid;
  using X = typename Monoid::value_type;
  using value_type = X;
  using operator_type = int; // 定義だけしておく
  using np = Node_CM *;

  np p, l, r;
  X x, prod;
  u32 size;
  bool rev;

  static void new_node(np n, const X &x) {
    n->p = n->l = n->r = nullptr;
    n->x = n->prod = x;
    n->size = 1;
    n->rev = 0;
  }

  void update() {
    size = 1;
    prod = x;
    if (l) {
      size += l->size;
      prod = Monoid::op(l->prod, prod);
    }
    if (r) {
      size += r->size;
      prod = Monoid::op(prod, r->prod);
    }
  }

  void prop() {
    if (rev) {
      if (l) {
        l->rev ^= 1;
        swap(l->l, l->r);
      }
      if (r) {
        r->rev ^= 1;
        swap(r->l, r->r);
      }
      rev = 0;
    }
  }

  // update, prop 以外で呼ばれるものは、splay 後であることが想定されている。
  // したがってその時点で update, prop 済であることを仮定してよい。
  X get() { return x; }
  void set(const X &xx) {
    x = xx;
    update();
  }
  void multiply(const X &xx) {
    x = Monoid::op(x, xx);
    update();
  }
  void reverse() {
    swap(l, r);
    rev ^= 1;
  }
};
template <typename Monoid>
using SplayTree_Commutative_Monoid = SplayTree<Node_CM<Monoid>>;
} // namespace SplayTreeNodes

using SplayTreeNodes::SplayTree_Commutative_Monoid;
#line 2 "/home/maspy/compro/library/ds/segtree/segtree.hpp"

template <class Monoid>
struct SegTree {
  using MX = Monoid;
  using X = typename MX::value_type;
  using value_type = X;
  vc<X> dat;
  int n, log, size;

  SegTree() {}
  SegTree(int n) { build(n); }
  template <typename F>
  SegTree(int n, F f) {
    build(n, f);
  }
  SegTree(const vc<X>& v) { build(v); }

  void build(int m) {
    build(m, [](int i) -> X { return MX::unit(); });
  }
  void build(const vc<X>& v) {
    build(len(v), [&](int i) -> X { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m, log = 1;
    while ((1 << log) < n) ++log;
    size = 1 << log;
    dat.assign(size << 1, MX::unit());
    FOR(i, n) dat[size + i] = f(i);
    FOR_R(i, 1, size) update(i);
  }

  X get(int i) { return dat[size + i]; }
  vc<X> get_all() { return {dat.begin() + size, dat.begin() + size + n}; }

  void update(int i) { dat[i] = Monoid::op(dat[2 * i], dat[2 * i + 1]); }
  void set(int i, const X& x) {
    assert(i < n);
    dat[i += size] = x;
    while (i >>= 1) update(i);
  }

  void multiply(int i, const X& x) {
    assert(i < n);
    i += size;
    dat[i] = Monoid::op(dat[i], x);
    while (i >>= 1) update(i);
  }

  X prod(int L, int R) {
    assert(0 <= L && L <= R && R <= n);
    X vl = Monoid::unit(), vr = Monoid::unit();
    L += size, R += size;
    while (L < R) {
      if (L & 1) vl = Monoid::op(vl, dat[L++]);
      if (R & 1) vr = Monoid::op(dat[--R], vr);
      L >>= 1, R >>= 1;
    }
    return Monoid::op(vl, vr);
  }

  X prod_all() { return dat[1]; }

  template <class F>
  int max_right(F check, int L) {
    assert(0 <= L && L <= n && check(Monoid::unit()));
    if (L == n) return n;
    L += size;
    X sm = Monoid::unit();
    do {
      while (L % 2 == 0) L >>= 1;
      if (!check(Monoid::op(sm, dat[L]))) {
        while (L < size) {
          L = 2 * L;
          if (check(Monoid::op(sm, dat[L]))) { sm = Monoid::op(sm, dat[L++]); }
        }
        return L - size;
      }
      sm = Monoid::op(sm, dat[L++]);
    } while ((L & -L) != L);
    return n;
  }

  template <class F>
  int min_left(F check, int R) {
    assert(0 <= R && R <= n && check(Monoid::unit()));
    if (R == 0) return 0;
    R += size;
    X sm = Monoid::unit();
    do {
      --R;
      while (R > 1 && (R % 2)) R >>= 1;
      if (!check(Monoid::op(dat[R], sm))) {
        while (R < size) {
          R = 2 * R + 1;
          if (check(Monoid::op(dat[R], sm))) { sm = Monoid::op(dat[R--], sm); }
        }
        return R + 1 - size;
      }
      sm = Monoid::op(dat[R], sm);
    } while ((R & -R) != R);
    return 0;
  }

  // prod_{l<=i<r} A[i xor x]
  X xor_prod(int l, int r, int xor_val) {
    static_assert(Monoid::commute);
    X x = Monoid::unit();
    for (int k = 0; k < log + 1; ++k) {
      if (l >= r) break;
      if (l & 1) { x = Monoid::op(x, dat[(size >> k) + ((l++) ^ xor_val)]); }
      if (r & 1) { x = Monoid::op(x, dat[(size >> k) + ((--r) ^ xor_val)]); }
      l /= 2, r /= 2, xor_val /= 2;
    }
    return x;
  }
};
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 582313106};
    if (mod == 1012924417) return {21, 368093570};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/ds/fenwicktree/fenwicktree_01.hpp"

#line 2 "/home/maspy/compro/library/alg/monoid/add.hpp"

template <typename E>
struct Monoid_Add {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 3 "/home/maspy/compro/library/ds/fenwicktree/fenwicktree.hpp"

template <typename Monoid>
struct FenwickTree {
  using G = Monoid;
  using MX = Monoid;
  using E = typename G::value_type;
  int n;
  vector<E> dat;
  E total;

  FenwickTree() {}
  FenwickTree(int n) { build(n); }
  template <typename F>
  FenwickTree(int n, F f) {
    build(n, f);
  }
  FenwickTree(const vc<E>& v) { build(v); }

  void build(int m) {
    n = m;
    dat.assign(m, G::unit());
    total = G::unit();
  }
  void build(const vc<E>& v) {
    build(len(v), [&](int i) -> E { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m;
    dat.clear();
    dat.reserve(n);
    total = G::unit();
    FOR(i, n) { dat.eb(f(i)); }
    for (int i = 1; i <= n; ++i) {
      int j = i + (i & -i);
      if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
    }
    total = prefix_sum(m);
  }

  E prod_all() { return total; }
  E sum_all() { return total; }
  E sum(int k) { return prefix_sum(k); }
  E prod(int k) { return prefix_prod(k); }
  E prefix_sum(int k) { return prefix_prod(k); }
  E prefix_prod(int k) {
    chmin(k, n);
    E ret = G::unit();
    for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
    return ret;
  }
  E sum(int L, int R) { return prod(L, R); }
  E prod(int L, int R) {
    chmax(L, 0), chmin(R, n);
    if (L == 0) return prefix_prod(R);
    assert(0 <= L && L <= R && R <= n);
    E pos = G::unit(), neg = G::unit();
    while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
    while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
    return G::op(pos, G::inverse(neg));
  }

  vc<E> get_all() {
    vc<E> res(n);
    FOR(i, n) res[i] = prod(i, i + 1);
    return res;
  }

  void add(int k, E x) { multiply(k, x); }
  void multiply(int k, E x) {
    static_assert(G::commute);
    total = G::op(total, x);
    for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
  }
  void set(int k, E x) { add(k, G::op(G::inverse(prod(k, k + 1)), x)); }

  template <class F>
  int max_right(const F check, int L = 0) {
    assert(check(G::unit()));
    E s = G::unit();
    int i = L;
    // 2^k 進むとダメ
    int k = [&]() {
      while (1) {
        if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
        if (i == 0) { return topbit(n) + 1; }
        int k = lowbit(i) - 1;
        if (i + (1 << k) > n) return k;
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (!check(t)) { return k; }
        s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
      }
    }();
    while (k) {
      --k;
      if (i + (1 << k) - 1 < len(dat)) {
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (check(t)) { i += (1 << k), s = t; }
      }
    }
    return i;
  }

  // check(i, x)
  template <class F>
  int max_right_with_index(const F check, int L = 0) {
    assert(check(L, G::unit()));
    E s = G::unit();
    int i = L;
    // 2^k 進むとダメ
    int k = [&]() {
      while (1) {
        if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
        if (i == 0) { return topbit(n) + 1; }
        int k = lowbit(i) - 1;
        if (i + (1 << k) > n) return k;
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (!check(i + (1 << k), t)) { return k; }
        s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
      }
    }();
    while (k) {
      --k;
      if (i + (1 << k) - 1 < len(dat)) {
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (check(i + (1 << k), t)) { i += (1 << k), s = t; }
      }
    }
    return i;
  }

  template <class F>
  int min_left(const F check, int R) {
    assert(check(G::unit()));
    E s = G::unit();
    int i = R;
    // false になるところまで戻る
    int k = 0;
    while (i > 0 && check(s)) {
      s = G::op(s, dat[i - 1]);
      k = lowbit(i);
      i -= i & -i;
    }
    if (check(s)) {
      assert(i == 0);
      return 0;
    }
    // 2^k 進むと ok になる
    // false を維持して進む
    while (k) {
      --k;
      E t = G::op(s, G::inverse(dat[i + (1 << k) - 1]));
      if (!check(t)) { i += (1 << k), s = t; }
    }
    return i + 1;
  }

  int kth(E k, int L = 0) {
    return max_right([&k](E x) -> bool { return x <= k; }, L);
  }
};
#line 4 "/home/maspy/compro/library/ds/fenwicktree/fenwicktree_01.hpp"

struct FenwickTree_01 {
  int N, n;
  vc<u64> dat;
  FenwickTree<Monoid_Add<int>> bit;
  FenwickTree_01() {}
  FenwickTree_01(int n) { build(n); }
  template <typename F>
  FenwickTree_01(int n, F f) {
    build(n, f);
  }

  void build(int m) {
    N = m;
    n = ceil<int>(N + 1, 64);
    dat.assign(n, u64(0));
    bit.build(n);
  }

  template <typename F>
  void build(int m, F f) {
    N = m;
    n = ceil<int>(N + 1, 64);
    dat.assign(n, u64(0));
    FOR(i, N) { dat[i / 64] |= u64(f(i)) << (i % 64); }
    bit.build(n, [&](int i) -> int { return popcnt(dat[i]); });
  }

  int sum_all() { return bit.sum_all(); }
  int sum(int k) { return prefix_sum(k); }
  int prefix_sum(int k) {
    int ans = bit.sum(k / 64);
    ans += popcnt(dat[k / 64] & ((u64(1) << (k % 64)) - 1));
    return ans;
  }
  int sum(int L, int R) {
    if (L == 0) return prefix_sum(R);
    int ans = 0;
    ans -= popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1));
    ans += popcnt(dat[R / 64] & ((u64(1) << (R % 64)) - 1));
    ans += bit.sum(L / 64, R / 64);
    return ans;
  }

  void add(int k, int x) {
    if (x == 1) add(k);
    if (x == -1) remove(k);
  }

  void add(int k) {
    dat[k / 64] |= u64(1) << (k % 64);
    bit.add(k / 64, 1);
  }
  void remove(int k) {
    dat[k / 64] &= ~(u64(1) << (k % 64));
    bit.add(k / 64, -1);
  }

  int kth(int k, int L = 0) {
    if (k >= sum_all()) return N;
    k += popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1));
    L /= 64;
    int mid = 0;
    auto check = [&](auto e) -> bool {
      if (e <= k) chmax(mid, e);
      return e <= k;
    };
    int idx = bit.max_right(check, L);
    if (idx == n) return N;
    k -= mid;
    u64 x = dat[idx];
    int p = popcnt(x);
    if (p <= k) return N;
    k = binary_search([&](int n) -> bool { return (p - popcnt(x >> n)) <= k; },
                      0, 64, 0);
    return 64 * idx + k;
  }

  int next(int k) {
    int idx = k / 64;
    k %= 64;
    u64 x = dat[idx] & ~((u64(1) << k) - 1);
    if (x) return 64 * idx + lowbit(x);
    idx = bit.kth(0, idx + 1);
    if (idx == n || !dat[idx]) return N;
    return 64 * idx + lowbit(dat[idx]);
  }

  int prev(int k) {
    if (k == N) --k;
    int idx = k / 64;
    k %= 64;
    u64 x = dat[idx];
    if (k < 63) x &= (u64(1) << (k + 1)) - 1;
    if (x) return 64 * idx + topbit(x);
    idx = bit.min_left([&](auto e) -> bool { return e <= 0; }, idx) - 1;
    if (idx == -1) return -1;
    return 64 * idx + topbit(dat[idx]);
  }
};
#line 11 "main.cpp"

using mint = modint107;

void solve() {
  LL(N, K);
  VEC(int, P, N);
  VEC(int, W, N);
  {
    vc<int> who(N);
    FOR(i, N) who[N - P[i]] = i;
    vc<int> tmp(N);
    FOR(i, N) tmp[i] = W[who[i]];
    swap(P, who);
    swap(W, tmp);
    for (auto& x: P) ++x;
  }

  SHOW(P);
  SHOW(W);

  SplayTree_Commutative_Monoid<Monoid_Max<int>> ST(N);
  using np = decltype(ST)::np;

  SegTree<Monoid_Min<int>> seg_min(W);
  SegTree<Monoid_Max<int>> seg_max(W);

  FenwickTree_01 bit(N, [&](int i) -> int { return 1; });

  auto dfs = [&](auto& dfs, int L, int R) -> pair<mint, np> {
    int cnt = bit.sum(L, R);
    if (cnt == 0) { return {mint(1), nullptr}; }

    int mi = seg_min.prod(L, R);
    int ma = seg_max.prod(L, R);
    if (mi + ma <= K) {
      int idx = seg_min.max_right([&](auto e) -> bool { return e > mi; }, L);
      assert(W[idx] == mi);
      seg_min.set(idx, infty<int>);
      seg_max.set(idx, -infty<int>);
      bit.remove(idx);
      auto [ans, root] = dfs(dfs, L, R);
      ans *= cnt;
      auto [X, Y] = ST.split_max_right_prod(root, [&](auto e) -> bool { return e < P[idx]; });
      root = ST.merge3(X, ST.new_node(P[idx]), Y);
      SHOW(ST.get_all(root));
      return {ans, root};
    }
    // max は動かない
    int idx = seg_max.max_right([&](auto e) -> bool { return e < ma; }, L);
    assert(W[idx] == ma);
    auto [x1, r1] = dfs(dfs, L, idx);
    auto [x2, r2] = dfs(dfs, idx + 1, R);
    np root = ST.merge3(r1, ST.new_node(P[idx]), r2);
    SHOW(ST.get_all(root));
    return {x1 * x2, root};
  };

  auto [ans, root] = dfs(dfs, 0, N);
  vc<int> ANS = ST.get_all(root);
  print(ans);
  print(ANS);
}

signed main() { solve(); }

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3952kb

input:

5 10
1 2 3 4 5
6 5 3 9 2

output:

3
5 4 2 1 3

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 0ms
memory: 3648kb

input:

5 10
1 2 3 4 5
2 4 3 3 8

output:

30
1 5 2 3 4

result:

ok 2 lines

Test #3:

score: 0
Accepted
time: 0ms
memory: 3920kb

input:

5 10
1 2 3 4 5
2 3 4 5 1

output:

120
1 2 3 4 5

result:

ok 2 lines

Test #4:

score: 0
Accepted
time: 0ms
memory: 3652kb

input:

5 10
1 2 3 4 5
2 3 4 5 6

output:

60
1 2 3 5 4

result:

ok 2 lines

Test #5:

score: 0
Accepted
time: 97ms
memory: 23860kb

input:

100000 96
1996 78922 45321 68844 32404 82013 66552 81163 17216 48170 35495 56660 13480 43118 23173 47257 50168 87069 26167 67231 31758 25694 61063 56642 8923 7727 54528 96554 38964 7604 6822 16256 45300 58869 31359 48638 87645 14779 81505 59585 89293 9291 7002 31810 84701 77648 78295 42595 11394 479...

output:

457992974
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10...

result:

ok 2 lines

Test #6:

score: -100
Wrong Answer
time: 25ms
memory: 11316kb

input:

100000 84
93330 3894 94859 22134 49668 30606 26739 82976 76701 56323 75537 7626 87226 20857 98177 21811 70827 75898 8111 48223 26186 64222 63002 79024 19126 41638 1048 43857 25379 19764 60207 27675 77665 66327 6274 34861 30287 13449 64505 51490 5804 65843 49014 85795 12365 31565 34411 71697 66568 28...

output:

120390347
1358 17609 18290 26501 35681 58859 60458 66474 79326 81095 92556 23867 99165 28710 12244 72282 11204 11811 19728 29952 34067 37825 67861 84745 87426 76518 4067 12286 25502 46675 50885 14477 51062 57578 58025 89917 98967 83739 33176 79256 49220 64892 1209 25824 32650 33123 50323 54679 64502...

result:

wrong answer 1st lines differ - expected: '524727018', found: '120390347'