QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#724232#9254. Random VariablesmaspyAC ✓369ms47768kbC++2347.0kb2024-11-08 11:08:422024-11-08 11:08:43

Judging History

你现在查看的是最新测评结果

  • [2024-11-08 11:08:43]
  • 评测
  • 测评结果:AC
  • 用时:369ms
  • 内存:47768kb
  • [2024-11-08 11:08:42]
  • 提交

answer

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/mod/dynamic_modint.hpp"

#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 2 "/home/maspy/compro/library/mod/primitive_root.hpp"

#line 2 "/home/maspy/compro/library/nt/factor.hpp"

#line 2 "/home/maspy/compro/library/random/base.hpp"

u64 RNG_64() {
  static u64 x_ = u64(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "/home/maspy/compro/library/mod/mongomery_modint.hpp"

// odd mod.
// x の代わりに rx を持つ
template <int id, typename U1, typename U2>
struct Mongomery_modint {
  using mint = Mongomery_modint;
  inline static U1 m, r, n2;
  static constexpr int W = numeric_limits<U1>::digits;

  static void set_mod(U1 mod) {
    assert(mod & 1 && mod <= U1(1) << (W - 2));
    m = mod, n2 = -U2(m) % m, r = m;
    FOR(5) r *= 2 - m * r;
    r = -r;
    assert(r * m == U1(-1));
  }
  static U1 reduce(U2 b) { return (b + U2(U1(b) * r) * m) >> W; }

  U1 x;
  Mongomery_modint() : x(0) {}
  Mongomery_modint(U1 x) : x(reduce(U2(x) * n2)){};
  U1 val() const {
    U1 y = reduce(x);
    return y >= m ? y - m : y;
  }
  mint &operator+=(mint y) {
    x = ((x += y.x) >= m ? x - m : x);
    return *this;
  }
  mint &operator-=(mint y) {
    x -= (x >= y.x ? y.x : y.x - m);
    return *this;
  }
  mint &operator*=(mint y) {
    x = reduce(U2(x) * y.x);
    return *this;
  }
  mint operator+(mint y) const { return mint(*this) += y; }
  mint operator-(mint y) const { return mint(*this) -= y; }
  mint operator*(mint y) const { return mint(*this) *= y; }
  bool operator==(mint y) const {
    return (x >= m ? x - m : x) == (y.x >= m ? y.x - m : y.x);
  }
  bool operator!=(mint y) const { return not operator==(y); }
  mint pow(ll n) const {
    assert(n >= 0);
    mint y = 1, z = *this;
    for (; n; n >>= 1, z *= z)
      if (n & 1) y *= z;
    return y;
  }
};

template <int id>
using Mongomery_modint_32 = Mongomery_modint<id, u32, u64>;
template <int id>
using Mongomery_modint_64 = Mongomery_modint<id, u64, u128>;
#line 3 "/home/maspy/compro/library/nt/primetest.hpp"

bool primetest(const u64 x) {
  assert(x < u64(1) << 62);
  if (x == 2 or x == 3 or x == 5 or x == 7) return true;
  if (x % 2 == 0 or x % 3 == 0 or x % 5 == 0 or x % 7 == 0) return false;
  if (x < 121) return x > 1;
  const u64 d = (x - 1) >> lowbit(x - 1);

  using mint = Mongomery_modint_64<202311020>;

  mint::set_mod(x);
  const mint one(u64(1)), minus_one(x - 1);
  auto ok = [&](u64 a) -> bool {
    auto y = mint(a).pow(d);
    u64 t = d;
    while (y != one && y != minus_one && t != x - 1) y *= y, t <<= 1;
    if (y != minus_one && t % 2 == 0) return false;
    return true;
  };
  if (x < (u64(1) << 32)) {
    for (u64 a: {2, 7, 61})
      if (!ok(a)) return false;
  } else {
    for (u64 a: {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
      if (!ok(a)) return false;
    }
  }
  return true;
}
#line 5 "/home/maspy/compro/library/nt/factor.hpp"

template <typename mint>
ll rho(ll n, ll c) {
  assert(n > 1);
  const mint cc(c);
  auto f = [&](mint x) { return x * x + cc; };
  mint x = 1, y = 2, z = 1, q = 1;
  ll g = 1;
  const ll m = 1LL << (__lg(n) / 5);
  for (ll r = 1; g == 1; r <<= 1) {
    x = y;
    FOR(r) y = f(y);
    for (ll k = 0; k < r && g == 1; k += m) {
      z = y;
      FOR(min(m, r - k)) y = f(y), q *= x - y;
      g = gcd(q.val(), n);
    }
  }
  if (g == n) do {
      z = f(z);
      g = gcd((x - z).val(), n);
    } while (g == 1);
  return g;
}

ll find_prime_factor(ll n) {
  assert(n > 1);
  if (primetest(n)) return n;
  FOR(100) {
    ll m = 0;
    if (n < (1 << 30)) {
      using mint = Mongomery_modint_32<20231025>;
      mint::set_mod(n);
      m = rho<mint>(n, RNG(0, n));
    } else {
      using mint = Mongomery_modint_64<20231025>;
      mint::set_mod(n);
      m = rho<mint>(n, RNG(0, n));
    }
    if (primetest(m)) return m;
    n = m;
  }
  assert(0);
  return -1;
}

// ソートしてくれる
vc<pair<ll, int>> factor(ll n) {
  assert(n >= 1);
  vc<pair<ll, int>> pf;
  FOR(p, 2, 100) {
    if (p * p > n) break;
    if (n % p == 0) {
      ll e = 0;
      do { n /= p, e += 1; } while (n % p == 0);
      pf.eb(p, e);
    }
  }
  while (n > 1) {
    ll p = find_prime_factor(n);
    ll e = 0;
    do { n /= p, e += 1; } while (n % p == 0);
    pf.eb(p, e);
  }
  sort(all(pf));
  return pf;
}

vc<pair<ll, int>> factor_by_lpf(ll n, vc<int>& lpf) {
  vc<pair<ll, int>> res;
  while (n > 1) {
    int p = lpf[n];
    int e = 0;
    while (n % p == 0) {
      n /= p;
      ++e;
    }
    res.eb(p, e);
  }
  return res;
}
#line 2 "/home/maspy/compro/library/mod/mod_pow.hpp"

#line 2 "/home/maspy/compro/library/mod/barrett.hpp"

// https://github.com/atcoder/ac-library/blob/master/atcoder/internal_math.hpp
struct Barrett {
  u32 m;
  u64 im;
  explicit Barrett(u32 m = 1) : m(m), im(u64(-1) / m + 1) {}
  u32 umod() const { return m; }
  u32 modulo(u64 z) {
    if (m == 1) return 0;
    u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
    u64 y = x * m;
    return (z - y + (z < y ? m : 0));
  }
  u64 floor(u64 z) {
    if (m == 1) return z;
    u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
    u64 y = x * m;
    return (z < y ? x - 1 : x);
  }
  pair<u64, u32> divmod(u64 z) {
    if (m == 1) return {z, 0};
    u64 x = (u64)(((unsigned __int128)(z)*im) >> 64);
    u64 y = x * m;
    if (z < y) return {x - 1, z - y + m};
    return {x, z - y};
  }
  u32 mul(u32 a, u32 b) { return modulo(u64(a) * b); }
};

struct Barrett_64 {
  u128 mod, mh, ml;

  explicit Barrett_64(u64 mod = 1) : mod(mod) {
    u128 m = u128(-1) / mod;
    if (m * mod + mod == u128(0)) ++m;
    mh = m >> 64;
    ml = m & u64(-1);
  }

  u64 umod() const { return mod; }

  u64 modulo(u128 x) {
    u128 z = (x & u64(-1)) * ml;
    z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
    z = (x >> 64) * mh + (z >> 64);
    x -= z * mod;
    return x < mod ? x : x - mod;
  }

  u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); }
};
#line 5 "/home/maspy/compro/library/mod/mod_pow.hpp"

u32 mod_pow(int a, ll n, int mod) {
  assert(n >= 0);
  a = ((a %= mod) < 0 ? a + mod : a);
  if ((mod & 1) && (mod < (1 << 30))) {
    using mint = Mongomery_modint_32<202311021>;
    mint::set_mod(mod);
    return mint(a).pow(n).val();
  }
  Barrett bt(mod);
  int r = 1;
  while (n) {
    if (n & 1) r = bt.mul(r, a);
    a = bt.mul(a, a), n >>= 1;
  }
  return r;
}

u64 mod_pow_64(ll a, ll n, u64 mod) {
  assert(n >= 0);
  a = ((a %= mod) < 0 ? a + mod : a);
  if ((mod & 1) && (mod < (u64(1) << 62))) {
    using mint = Mongomery_modint_64<202311021>;
    mint::set_mod(mod);
    return mint(a).pow(n).val();
  }
  Barrett_64 bt(mod);
  ll r = 1;
  while (n) {
    if (n & 1) r = bt.mul(r, a);
    a = bt.mul(a, a), n >>= 1;
  }
  return r;
}
#line 6 "/home/maspy/compro/library/mod/primitive_root.hpp"

// int
int primitive_root(int p) {
  auto pf = factor(p - 1);
  auto is_ok = [&](int g) -> bool {
    for (auto&& [q, e]: pf)
      if (mod_pow(g, (p - 1) / q, p) == 1) return false;
    return true;
  };
  while (1) {
    int x = RNG(1, p);
    if (is_ok(x)) return x;
  }
  return -1;
}

ll primitive_root_64(ll p) {
  auto pf = factor(p - 1);
  auto is_ok = [&](ll g) -> bool {
    for (auto&& [q, e]: pf)
      if (mod_pow_64(g, (p - 1) / q, p) == 1) return false;
    return true;
  };
  while (1) {
    ll x = RNG(1, p);
    if (is_ok(x)) return x;
  }
  return -1;
}
#line 6 "/home/maspy/compro/library/mod/dynamic_modint.hpp"

template <int id>
struct Dynamic_Modint {
  static constexpr bool is_modint = true;
  using mint = Dynamic_Modint;
  u32 val;
  static Barrett bt;
  static u32 umod() { return bt.umod(); }

  static int get_mod() { return (int)(bt.umod()); }
  static void set_mod(int m) {
    assert(1 <= m);
    bt = Barrett(m);
  }

  static Dynamic_Modint raw(u32 v) {
    Dynamic_Modint x;
    x.val = v;
    return x;
  }
  Dynamic_Modint() : val(0) {}
  Dynamic_Modint(u32 x) : val(bt.modulo(x)) {}
  Dynamic_Modint(u64 x) : val(bt.modulo(x)) {}
  Dynamic_Modint(int x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {}
  Dynamic_Modint(ll x) : val((x %= get_mod()) < 0 ? x + get_mod() : x) {}
  Dynamic_Modint(i128 x) : val((x %= get_mod()) < 0 ? x + get_mod() : x){};

  mint& operator+=(const mint& rhs) {
    val = (val += rhs.val) < umod() ? val : val - umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    val = (val += umod() - rhs.val) < umod() ? val : val - umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    val = bt.mul(val, rhs.val);
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inverse(); }
  mint operator-() const { return mint() - *this; }
  mint pow(ll n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x, n >>= 1;
    }
    return r;
  }
  mint inverse() const {
    int x = val, mod = get_mod();
    int a = x, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    if (u < 0) u += mod;
    return u;
  }

  friend mint operator+(const mint& lhs, const mint& rhs) {
    return mint(lhs) += rhs;
  }
  friend mint operator-(const mint& lhs, const mint& rhs) {
    return mint(lhs) -= rhs;
  }
  friend mint operator*(const mint& lhs, const mint& rhs) {
    return mint(lhs) *= rhs;
  }
  friend mint operator/(const mint& lhs, const mint& rhs) {
    return mint(lhs) /= rhs;
  }
  friend bool operator==(const mint& lhs, const mint& rhs) {
    return lhs.val == rhs.val;
  }
  friend bool operator!=(const mint& lhs, const mint& rhs) {
    return lhs.val != rhs.val;
  }
  static pair<int, int>& get_ntt() {
    static pair<int, int> p = {-1, -1};
    return p;
  }
  static void set_ntt_info() {
    int mod = get_mod();
    int k = lowbit(mod - 1);
    int r = primitive_root(mod);
    r = mod_pow(r, (mod - 1) >> k, mod);
    get_ntt() = {k, r};
  }
  static pair<int, int> ntt_info() { return get_ntt(); }
  static bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int id>
void rd(Dynamic_Modint<id>& x) {
  fastio::rd(x.val);
  x.val %= Dynamic_Modint<id>::umod();
}
template <int id>
void wt(Dynamic_Modint<id> x) {
  fastio::wt(x.val);
}
#endif

using dmint = Dynamic_Modint<-1>;
template <int id>
Barrett Dynamic_Modint<id>::bt;
#line 2 "/home/maspy/compro/library/mod/mod_inv.hpp"

// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
  if (mod == 0) return 0;
  mod = abs(mod);
  val %= mod;
  if (val < 0) val += mod;
  ll a = val, b = mod, u = 1, v = 0, t;
  while (b > 0) {
    t = a / b;
    swap(a -= t * b, b), swap(u -= t * v, v);
  }
  if (u < 0) u += mod;
  return u;
}
#line 3 "/home/maspy/compro/library/mod/binomial.hpp"

struct Binomial_PrimePower {
  int p, e;
  int pp;
  int root;
  int ord;
  vc<int> exp;
  vc<int> log_fact;
  vc<int> power;
  Barrett bt_p, bt_pp;

  Binomial_PrimePower(int p, int e) : p(p), e(e), power(e + 1, 1) {
    FOR(i, e) power[i + 1] = power[i] * p;
    pp = power[e];
    bt_p = Barrett(p), bt_pp = Barrett(pp);
    vc<int> log;
    if (p == 2) {
      if (e <= 1) { return; }
      root = 5;
      ord = pp / 4;
      exp.assign(ord, 1);
      log.assign(pp, 0);
      FOR(i, ord - 1) { exp[i + 1] = (exp[i] * root) & (pp - 1); }
      FOR(i, ord) log[exp[i]] = log[pp - exp[i]] = i;
    } else {
      root = primitive_root(p);
      ord = pp / p * (p - 1);
      exp.assign(ord, 1);
      log.assign(pp, 0);
      FOR(i, ord - 1) { exp[i + 1] = bt_pp.mul(exp[i], root); }
      FOR(i, ord) log[exp[i]] = i;
    }
    log_fact.assign(pp, 0);
    FOR(i, 1, pp) {
      log_fact[i] = log_fact[i - 1] + log[i];
      if (log_fact[i] >= ord) log_fact[i] -= ord;
    }
  }

  int C(ll n, ll i) {
    assert(n >= 0);
    if (i < 0 || i > n) return 0;
    ll a = i, b = n - i;
    if (pp == 2) { return ((a & b) == 0 ? 1 : 0); }
    int log = 0, cnt_p = 0, sgn = 0;
    if (e > 1) {
      while (n && cnt_p < e) {
        auto [n1, nr1] = bt_pp.divmod(n);
        auto [a1, ar1] = bt_pp.divmod(a);
        auto [b1, br1] = bt_pp.divmod(b);
        log += log_fact[nr1] - log_fact[ar1] - log_fact[br1];
        if (p > 2) {
          sgn += (n1 & 1) + (a1 & 1) + (b1 & 1);
        } else {
          sgn += (((nr1 + 1) & 4) + ((ar1 + 1) & 4) + ((br1 + 1) & 4)) / 4;
        }
        n = bt_p.floor(n), a = bt_p.floor(a), b = bt_p.floor(b);
        cnt_p += n - a - b;
      }
    } else {
      while (n && cnt_p < e) {
        auto [n1, nr1] = bt_pp.divmod(n);
        auto [a1, ar1] = bt_pp.divmod(a);
        auto [b1, br1] = bt_pp.divmod(b);
        log += log_fact[nr1] - log_fact[ar1] - log_fact[br1];
        if (p > 2) {
          sgn += (n1 & 1) + (a1 & 1) + (b1 & 1);
        } else {
          sgn += ((nr1 + 1) >> 2 & 1) + ((ar1 + 1) >> 2 & 1)
                 + ((br1 + 1) >> 2 & 1);
        }
        n = n1, a = a1, b = b1;
        cnt_p += n - a - b;
      }
    }
    if (cnt_p >= e) return 0;
    log %= ord;
    if (log < 0) log += ord;
    int res = exp[log];
    if (sgn & 1) res = pp - res;
    return bt_pp.mul(power[cnt_p], res);
  }
};

struct Binomial {
  int mod;
  vc<Binomial_PrimePower> BPP;
  vc<int> crt_coef;
  Barrett bt;

  Binomial(int mod) : mod(mod), bt(mod) {
    for (auto&& [p, e]: factor(mod)) {
      int pp = 1;
      FOR(e) pp *= p;
      BPP.eb(Binomial_PrimePower(p, e));
      int other = mod / pp;
      crt_coef.eb(ll(other) * mod_inv(other, pp) % mod);
    }
  }

  int C(ll n, ll k) {
    assert(n >= 0);
    if (k < 0 || k > n) return 0;
    int ANS = 0;
    FOR(s, len(crt_coef)) {
      ANS = bt.modulo(ANS + u64(BPP[s].C(n, k)) * crt_coef[s]);
    }
    return ANS;
  }
};
#line 3 "/home/maspy/compro/library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 582313106};
    if (mod == 1012924417) return {21, 368093570};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/mod/crt3.hpp"

constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
  a %= mod;
  u64 res = 1;
  FOR(32) {
    if (n & 1) res = res * a % mod;
    a = a * a % mod, n /= 2;
  }
  return res;
}

template <typename T, u32 p0, u32 p1>
T CRT2(u64 a0, u64 a1) {
  static_assert(p0 < p1);
  static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
  u64 c = (a1 - a0 + p1) * x0_1 % p1;
  return a0 + c * p0;
}

template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
  static_assert(p0 < p1 && p1 < p2);
  static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
  static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
  static constexpr u64 p01 = u64(p0) * p1;
  u64 c = (a1 - a0 + p1) * x1 % p1;
  u64 ans_1 = a0 + c * p0;
  c = (a2 - ans_1 % p2 + p2) * x2 % p2;
  return T(ans_1) + T(c) * T(p01);
}

template <typename T, u32 p0, u32 p1, u32 p2, u32 p3>
T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) {
  static_assert(p0 < p1 && p1 < p2 && p2 < p3);
  static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
  static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
  static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
  static constexpr u64 p01 = u64(p0) * p1;
  u64 c = (a1 - a0 + p1) * x1 % p1;
  u64 ans_1 = a0 + c * p0;
  c = (a2 - ans_1 % p2 + p2) * x2 % p2;
  u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
  c = (a3 - ans_2 % p3 + p3) * x3 % p3;
  return T(ans_2) + T(c) * T(p01) * T(p2);
}

template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4>
T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) {
  static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4);
  static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
  static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
  static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
  static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4);
  static constexpr u64 p01 = u64(p0) * p1;
  static constexpr u64 p23 = u64(p2) * p3;
  u64 c = (a1 - a0 + p1) * x1 % p1;
  u64 ans_1 = a0 + c * p0;
  c = (a2 - ans_1 % p2 + p2) * x2 % p2;
  u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
  c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3;
  u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01;
  c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4;
  return T(ans_3) + T(c) * T(p01) * T(p23);
}
#line 2 "/home/maspy/compro/library/poly/convolution_naive.hpp"

template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (n > m) return convolution_naive<T>(b, a);
  if (n == 0) return {};
  vector<T> ans(n + m - 1);
  FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
  return ans;
}

template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
  int n = int(a.size()), m = int(b.size());
  if (n > m) return convolution_naive<T>(b, a);
  if (n == 0) return {};
  vc<T> ans(n + m - 1);
  if (n <= 16 && (T::get_mod() < (1 << 30))) {
    for (int k = 0; k < n + m - 1; ++k) {
      int s = max(0, k - m + 1);
      int t = min(n, k + 1);
      u64 sm = 0;
      for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
      ans[k] = sm;
    }
  } else {
    for (int k = 0; k < n + m - 1; ++k) {
      int s = max(0, k - m + 1);
      int t = min(n, k + 1);
      u128 sm = 0;
      for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
      ans[k] = T::raw(sm % T::get_mod());
    }
  }
  return ans;
}
#line 2 "/home/maspy/compro/library/poly/convolution_karatsuba.hpp"

// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
  const int thresh = 30;
  if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
  int n = max(len(f), len(g));
  int m = ceil(n, 2);
  vc<T> f1, f2, g1, g2;
  if (len(f) < m) f1 = f;
  if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
  if (len(f) >= m) f2 = {f.begin() + m, f.end()};
  if (len(g) < m) g1 = g;
  if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
  if (len(g) >= m) g2 = {g.begin() + m, g.end()};
  vc<T> a = convolution_karatsuba(f1, g1);
  vc<T> b = convolution_karatsuba(f2, g2);
  FOR(i, len(f2)) f1[i] += f2[i];
  FOR(i, len(g2)) g1[i] += g2[i];
  vc<T> c = convolution_karatsuba(f1, g1);
  vc<T> F(len(f) + len(g) - 1);
  assert(2 * m + len(b) <= len(F));
  FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
  FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
  if (c.back() == T(0)) c.pop_back();
  FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
  return F;
}
#line 2 "/home/maspy/compro/library/poly/ntt.hpp"

template <class mint>
void ntt(vector<mint>& a, bool inverse) {
  assert(mint::can_ntt());
  const int rank2 = mint::ntt_info().fi;
  const int mod = mint::get_mod();
  static array<mint, 30> root, iroot;
  static array<mint, 30> rate2, irate2;
  static array<mint, 30> rate3, irate3;

  assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));

  static bool prepared = 0;
  if (!prepared) {
    prepared = 1;
    root[rank2] = mint::ntt_info().se;
    iroot[rank2] = mint(1) / root[rank2];
    FOR_R(i, rank2) {
      root[i] = root[i + 1] * root[i + 1];
      iroot[i] = iroot[i + 1] * iroot[i + 1];
    }
    mint prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 2; i++) {
      rate2[i] = root[i + 2] * prod;
      irate2[i] = iroot[i + 2] * iprod;
      prod *= iroot[i + 2];
      iprod *= root[i + 2];
    }
    prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 3; i++) {
      rate3[i] = root[i + 3] * prod;
      irate3[i] = iroot[i + 3] * iprod;
      prod *= iroot[i + 3];
      iprod *= root[i + 3];
    }
  }

  int n = int(a.size());
  int h = topbit(n);
  assert(n == 1 << h);
  if (!inverse) {
    int len = 0;
    while (len < h) {
      if (h - len == 1) {
        int p = 1 << (h - len - 1);
        mint rot = 1;
        FOR(s, 1 << len) {
          int offset = s << (h - len);
          FOR(i, p) {
            auto l = a[i + offset];
            auto r = a[i + offset + p] * rot;
            a[i + offset] = l + r;
            a[i + offset + p] = l - r;
          }
          rot *= rate2[topbit(~s & -~s)];
        }
        len++;
      } else {
        int p = 1 << (h - len - 2);
        mint rot = 1, imag = root[2];
        for (int s = 0; s < (1 << len); s++) {
          mint rot2 = rot * rot;
          mint rot3 = rot2 * rot;
          int offset = s << (h - len);
          for (int i = 0; i < p; i++) {
            u64 mod2 = u64(mod) * mod;
            u64 a0 = a[i + offset].val;
            u64 a1 = u64(a[i + offset + p].val) * rot.val;
            u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
            u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
            u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
            u64 na2 = mod2 - a2;
            a[i + offset] = a0 + a2 + a1 + a3;
            a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
            a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
            a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
          }
          rot *= rate3[topbit(~s & -~s)];
        }
        len += 2;
      }
    }
  } else {
    mint coef = mint(1) / mint(len(a));
    FOR(i, len(a)) a[i] *= coef;
    int len = h;
    while (len) {
      if (len == 1) {
        int p = 1 << (h - len);
        mint irot = 1;
        FOR(s, 1 << (len - 1)) {
          int offset = s << (h - len + 1);
          FOR(i, p) {
            u64 l = a[i + offset].val;
            u64 r = a[i + offset + p].val;
            a[i + offset] = l + r;
            a[i + offset + p] = (mod + l - r) * irot.val;
          }
          irot *= irate2[topbit(~s & -~s)];
        }
        len--;
      } else {
        int p = 1 << (h - len);
        mint irot = 1, iimag = iroot[2];
        FOR(s, (1 << (len - 2))) {
          mint irot2 = irot * irot;
          mint irot3 = irot2 * irot;
          int offset = s << (h - len + 2);
          for (int i = 0; i < p; i++) {
            u64 a0 = a[i + offset + 0 * p].val;
            u64 a1 = a[i + offset + 1 * p].val;
            u64 a2 = a[i + offset + 2 * p].val;
            u64 a3 = a[i + offset + 3 * p].val;
            u64 x = (mod + a2 - a3) * iimag.val % mod;
            a[i + offset] = a0 + a1 + a2 + a3;
            a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
            a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
            a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
          }
          irot *= irate3[topbit(~s & -~s)];
        }
        len -= 2;
      }
    }
  }
}
#line 8 "/home/maspy/compro/library/poly/convolution.hpp"

template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
  if (a.empty() || b.empty()) return {};
  int n = int(a.size()), m = int(b.size());
  int sz = 1;
  while (sz < n + m - 1) sz *= 2;

  // sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
  if ((n + m - 3) <= sz / 2) {
    auto a_last = a.back(), b_last = b.back();
    a.pop_back(), b.pop_back();
    auto c = convolution(a, b);
    c.resize(n + m - 1);
    c[n + m - 2] = a_last * b_last;
    FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
    FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
    return c;
  }

  a.resize(sz), b.resize(sz);
  bool same = a == b;
  ntt(a, 0);
  if (same) {
    b = a;
  } else {
    ntt(b, 0);
  }
  FOR(i, sz) a[i] *= b[i];
  ntt(a, 1);
  a.resize(n + m - 1);
  return a;
}

template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  static constexpr int p0 = 167772161;
  static constexpr int p1 = 469762049;
  static constexpr int p2 = 754974721;
  using mint0 = modint<p0>;
  using mint1 = modint<p1>;
  using mint2 = modint<p2>;
  vc<mint0> a0(n), b0(m);
  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
  FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
  auto c0 = convolution_ntt<mint0>(a0, b0);
  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);
  vc<mint> c(len(c0));
  FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); }
  return c;
}

vector<ll> convolution(vector<ll> a, vector<ll> b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (min(n, m) <= 2500) return convolution_naive(a, b);

  ll mi_a = MIN(a), mi_b = MIN(b);
  for (auto& x: a) x -= mi_a;
  for (auto& x: b) x -= mi_b;
  assert(MAX(a) * MAX(b) <= 1e18);

  auto Ac = cumsum<ll>(a), Bc = cumsum<ll>(b);
  vi res(n + m - 1);
  for (int k = 0; k < n + m - 1; ++k) {
    int s = max(0, k - m + 1);
    int t = min(n, k + 1);
    res[k] += (t - s) * mi_a * mi_b;
    res[k] += mi_a * (Bc[k - s + 1] - Bc[k - t + 1]);
    res[k] += mi_b * (Ac[t] - Ac[s]);
  }

  static constexpr u32 MOD1 = 1004535809;
  static constexpr u32 MOD2 = 1012924417;
  using mint1 = modint<MOD1>;
  using mint2 = modint<MOD2>;

  vc<mint1> a1(n), b1(m);
  vc<mint2> a2(n), b2(m);
  FOR(i, n) a1[i] = a[i], a2[i] = a[i];
  FOR(i, m) b1[i] = b[i], b2[i] = b[i];

  auto c1 = convolution_ntt<mint1>(a1, b1);
  auto c2 = convolution_ntt<mint2>(a2, b2);

  FOR(i, n + m - 1) { res[i] += CRT2<u64, MOD1, MOD2>(c1[i].val, c2[i].val); }
  return res;
}

template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
  int n = len(a), m = len(b);
  if (!n || !m) return {};
  if (mint::can_ntt()) {
    if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
    return convolution_ntt(a, b);
  }
  if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
  return convolution_garner(a, b);
}
#line 7 "main.cpp"

using mint = dmint;

/*
f_a(x)=sum{i>a}x^i/i!
F_a,b(x)=f_a(x)^b

a を固定
f(x)=sum{i>a}x^i/i!
F_b(x)=f(x)^b
F_b(x)'=bf(x)^{b-1}f'(x)=bf(x)^{b-1}(f(x)+x^a/a!)
F_b(x)'=bF_b(x)+bx^a/a!F_{b-1}(x)

[x^j]
dp[b][j+1]=bdp[b][j]+dp[b-1][j-a]*binom(j,a)
*/

vc<mint> dp[1024][1024];

void solve() {
  LL(Q, mod);
  mint::set_mod(mod);
  FOR(a, 1001) {
    int m = ceil<int>(1000, a + 1);
    FOR(b, m + 1) dp[a][b].resize(1001);
    dp[a][0][0] = 1;
    FOR(b, 1, m + 1) {
      FOR(j, (a + 1) * b - 1, 1000) { dp[a][b][j + 1] = dp[a][b][j] * b + dp[a][b - 1][j - a] * C_dense<mint>(j, a) * b; }
    }
  }

  auto get_binom = [&](ll N, ll M) -> vc<mint> {
    auto dfs = [&](auto& dfs, ll m) -> vc<mint> {
      if (m == 0) {
        vc<mint> f(N + 1);
        f[0] = 1;
        return f;
      }
      auto F = dfs(dfs, m / 2);
      F = convolution<mint>(F, F);
      F.resize(N + 1);
      if (m & 1) { FOR_R(i, N) F[i + 1] += F[i]; }
      return F;
    };
    return dfs(dfs, M);
  };

  FOR(Q) {
    LL(N, M);
    vc<mint> B = get_binom(N, M);
    vc<mint> ANS(N + 1); // ANS[n]: すべて n 回以下です
    FOR(a, 1, N + 1) {
      FOR(b, N + 1) {
        if ((a + 1) * b > N) break;
        mint v = B[b];
        if (b & 1) v = -v;
        mint pw = 1;
        FOR_R(j, (a + 1) * b, N + 1) {
          mint x = dp[a][b][j];
          // ANS[a] += v * x * C_dense<mint>(N, j) * mint(M - b).pow(N - j);
          ANS[a] += v * x * C_dense<mint>(N, j) * pw;
          pw *= M - b;
        }
      }
    }
    FOR_R(i, N) ANS[i + 1] -= ANS[i];
    mint ans = 0;
    FOR(k, N + 1) ans += ANS[k] * k;
    print(ans);
  }
}

signed main() { solve(); }

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 31ms
memory: 47004kb

input:

3 123456789
3 2
5 5
7 7

output:

18
7145
2066323

result:

ok 3 lines

Test #2:

score: 0
Accepted
time: 35ms
memory: 47076kb

input:

100 2
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0

result:

ok 100 lines

Test #3:

score: 0
Accepted
time: 35ms
memory: 47224kb

input:

100 3
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
0
1
2
0
1
2
0
1
2
0
0
2
0
0
2
0
0
2
0
0
0
0
0
0
0
0
0
0
1
2
0
1
2
0
1
2
0
1
2
2
0
2
2
0
2
2
0
2
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
2
2
0
2
2
0
2
2
0
2
0
0
0
0
0
0
0
0
0
0
1
2
0
1
2
0
1
2
0
1

result:

ok 100 lines

Test #4:

score: 0
Accepted
time: 35ms
memory: 47112kb

input:

100 4
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
0
1
2
3
0
1
2
2
2
0
0
2
2
0
0
2
2
3
2
3
0
3
2
3
0
3
2
0
0
0
0
0
0
0
0
0
0
1
2
3
0
1
2
3
0
1
2
2
0
2
0
2
0
2
0
2
0
3
0
3
0
3
0
3
0
3
0
0
0
0
0
0
0
0
0
0
0
1
2
3
0
1
2
3
0
1
2
2
0
2
0
2
0
2
0
2
0

result:

ok 100 lines

Test #5:

score: 0
Accepted
time: 39ms
memory: 47156kb

input:

100 5
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
0
1
2
3
4
0
2
1
2
0
0
2
1
2
0
0
3
3
1
3
0
3
3
1
3
0
4
4
2
4
0
4
4
2
4
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
0
1
2
3
4
0
2
3
3
2
0
2
3
3
2
0
3
4
1
2
0
3
4
1
2
0
4
4
4
4
0
4
4
4
4
0
0
0
0
0
0
0
0
0
0
0

result:

ok 100 lines

Test #6:

score: 0
Accepted
time: 30ms
memory: 47076kb

input:

100 6
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
5
0
1
2
3
4
2
0
0
2
0
0
2
0
0
2
3
0
3
0
3
0
3
0
3
0
4
2
0
4
2
0
4
2
0
4
5
2
3
2
5
0
5
2
3
2
0
0
0
0
0
0
0
0
0
0
1
0
3
4
3
0
1
0
3
4
2
2
0
2
2
0
2
2
0
2
3
0
3
0
3
0
3
0
3
0
4
2
0
4
2
0
4
2
0
4

result:

ok 100 lines

Test #7:

score: 0
Accepted
time: 29ms
memory: 47144kb

input:

100 7
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
5
6
0
1
2
3
2
6
5
6
2
0
0
2
6
5
3
4
2
3
6
3
0
3
4
2
4
2
3
5
2
5
0
4
2
3
5
5
3
6
5
4
0
5
5
3
6
0
6
1
1
6
0
6
0
6
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
0
1
2
3
2
1
4
4
1
2
0
2
1
4
3
3
4
3
4
4
0
3
3
4

result:

ok 100 lines

Test #8:

score: 0
Accepted
time: 44ms
memory: 47096kb

input:

100 8
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
5
6
7
0
1
2
2
6
4
4
6
2
0
0
2
6
3
2
3
4
3
6
3
0
3
2
4
4
0
0
4
4
0
0
4
4
5
6
3
4
1
2
7
0
5
6
6
4
6
0
6
4
6
0
6
4
7
4
3
0
7
4
3
0
7
4
0
0
0
0
0
0
0
0
0
0
1
6
3
4
5
2
7
0
1
6
2
4
6
0
2
4
6
0
2
4

result:

ok 100 lines

Test #9:

score: 0
Accepted
time: 39ms
memory: 47152kb

input:

100 9
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
5
6
7
8
0
1
2
6
3
2
3
6
2
0
0
2
3
0
6
0
6
3
6
3
0
3
4
8
3
4
5
6
4
2
0
4
5
2
0
2
8
0
8
5
0
5
6
0
0
6
0
0
6
0
0
6
7
3
6
1
3
3
4
3
0
7
8
8
6
5
8
3
2
8
0
8
0
0
0
0
0
0
0
0
0
0
1
8
3
4
2
6
7
5
0
1

result:

ok 100 lines

Test #10:

score: 0
Accepted
time: 35ms
memory: 47220kb

input:

100 10
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 ...

output:

1
2
3
4
5
6
7
8
9
0
2
6
2
0
0
2
6
2
0
0
3
8
1
8
5
8
3
6
3
0
4
4
2
4
0
4
4
2
4
0
5
0
5
0
5
0
5
0
5
0
6
2
8
4
0
6
2
8
4
0
7
8
3
2
5
2
3
8
7
0
8
4
6
2
0
8
4
6
2
0
9
4
9
4
5
4
9
4
9
0
0
0
0
0
0
0
0
0
0
0

result:

ok 100 lines

Test #11:

score: 0
Accepted
time: 36ms
memory: 47172kb

input:

100 11
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 ...

output:

1
2
3
4
5
6
7
8
9
10
2
6
1
9
8
9
1
6
2
0
3
7
7
9
8
10
10
3
6
3
4
0
5
5
10
10
8
9
9
6
5
0
4
10
6
7
10
4
2
7
6
10
4
5
3
2
0
7
2
5
7
5
2
8
6
1
6
0
3
6
8
6
6
3
2
4
8
3
6
9
9
8
10
2
8
6
10
9
3
1
10
0
4
3
0
6
0
7
4
9

result:

ok 100 lines

Test #12:

score: 0
Accepted
time: 190ms
memory: 47300kb

input:

10 972033073
576 523187654
758 588616188
30 532959085
476 481773028
573 76725430
520 142462406
865 820120297
687 526533288
913 38106557
67 924529654

output:

259748390
909910217
708973357
300073565
463921261
889897372
587262932
255642402
868975954
14589849

result:

ok 10 lines

Test #13:

score: 0
Accepted
time: 226ms
memory: 47248kb

input:

10 922366485
846 278501607
683 609355362
44 978777279
545 730718412
926 323835432
883 761846029
623 408215612
989 588832935
449 743830620
259 183431187

output:

461786112
672633342
164805246
547995105
9661617
154501063
370848893
402005970
886523490
435107511

result:

ok 10 lines

Test #14:

score: 0
Accepted
time: 203ms
memory: 47088kb

input:

10 13890975
949 837425969
667 981449995
991 564074312
501 604745038
593 640307170
128 408163542
80 976891742
930 710947599
852 333118419
250 333252788

output:

3898759
9290500
7087084
4913904
196250
1746549
9627740
8673120
10274253
10549775

result:

ok 10 lines

Test #15:

score: 0
Accepted
time: 147ms
memory: 47768kb

input:

10 105576445
649 937885257
141 713063090
253 716966251
845 330657011
347 664392407
810 50478969
389 530582574
228 199722046
85 256258366
605 3721959

output:

22721419
27962190
85541228
53950260
35288938
100176945
86409840
102331663
55591445
14790745

result:

ok 10 lines

Test #16:

score: 0
Accepted
time: 158ms
memory: 47320kb

input:

10 445185474
268 687201814
929 296077349
690 202741564
372 661889855
442 989604795
367 456833096
702 862601129
795 37538865
556 131444040
108 645857776

output:

39577672
390323147
423333756
49417686
12978114
278291170
60346062
410583855
68429394
296833176

result:

ok 10 lines

Test #17:

score: 0
Accepted
time: 210ms
memory: 47248kb

input:

10 265384486
870 503808438
959 733458117
126 226376632
979 205878607
747 270352323
339 384431347
373 659485098
597 832514575
832 906898547
12 869891031

output:

54820154
83262107
48675762
32938269
169458409
153632065
105152812
48645927
29870948
83831862

result:

ok 10 lines

Test #18:

score: 0
Accepted
time: 161ms
memory: 47268kb

input:

10 869896294
256 326197921
496 115501273
861 238744067
581 600444623
619 536213251
89 898877607
136 353575223
860 349472278
491 770026371
668 622723560

output:

678111040
344947200
90686837
157367547
295943299
25262829
81930384
532341712
23048077
475131428

result:

ok 10 lines

Test #19:

score: 0
Accepted
time: 240ms
memory: 47308kb

input:

10 692092859
831 647975618
792 737778459
392 768554014
854 612888229
31 148093584
793 559010229
970 237393805
339 914914862
831 979073722
988 738224088

output:

324659472
16793498
421391172
416475848
59704753
347151224
415078841
680610884
397373492
296521551

result:

ok 10 lines

Test #20:

score: 0
Accepted
time: 138ms
memory: 47380kb

input:

10 827165684
577 720722656
383 778750361
951 59165685
502 993162103
589 166261195
500 816688874
40 625075150
331 160531509
394 578798823
181 710984062

output:

736529364
199088527
528654835
586634074
442300715
383600380
707706396
763397655
534310310
338272096

result:

ok 10 lines

Test #21:

score: 0
Accepted
time: 127ms
memory: 47488kb

input:

10 691312083
185 445519030
93 44970277
951 662144708
252 766000017
83 911805458
424 816227326
770 136026896
354 763387805
247 458147285
747 14566368

output:

411209183
132362175
110569626
664410537
241484162
480388660
264805387
294178848
147876955
371900799

result:

ok 10 lines

Test #22:

score: 0
Accepted
time: 369ms
memory: 47388kb

input:

10 691312083
1000 445519030
1000 44970277
1000 662144708
1000 766000017
1000 911805458
1000 816227326
1000 136026896
1000 763387805
1000 458147285
747 14566368

output:

365043118
14826361
571573673
63977538
484010015
499398766
433242788
43269113
412491407
371900799

result:

ok 10 lines

Extra Test:

score: 0
Extra Test Passed