QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#724174#602. 最小费用最大流(随机数据)ucup-team902100 ✓197ms4160kbC++233.4kb2024-11-08 10:35:172024-11-08 10:35:17

Judging History

你现在查看的是最新测评结果

  • [2024-11-08 10:35:17]
  • 评测
  • 测评结果:100
  • 用时:197ms
  • 内存:4160kb
  • [2024-11-08 10:35:17]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace mcmf {

const int N = 405;
const ll inf = INT_MAX;
struct edge {
    int v, p;
    ll c, w;
};
vector<edge> g[N];
int vis[N], cur[N], n;
ll dis[N], pot[N];

int addv(int c) {
    while (c--) g[n++].clear();
    return n - 1;
}

void adde(int u, int v, ll c, ll w) {
    g[u].push_back({v, (int)g[v].size(), c, w});
    g[v].push_back({u, (int)g[u].size() - 1, 0, -w});
}

bool dijkstra(int s, int t) {
    fill_n(dis, n, inf);
    fill_n(vis, n, 0);
    typedef pair<ll, int> pli;
    priority_queue<pli, vector<pli>, greater<pli>> q;
    q.push({dis[s] = 0, s});
    while (!q.empty()) {
        int u;
        ll du;
        tie(du, u) = q.top();
        q.pop();
        if (vis[u]) continue;
        vis[u] = 1;
        for (edge e : g[u]) {
            int v = e.v;
            ll dv = du + pot[u] + e.w - pot[v];
            if (!e.c || vis[v] || dis[v] <= dv) continue;
            assert(e.w - pot[v] + pot[u] >= 0);
            q.push({dis[v] = dv, v});
        }
    }
    return vis[t];
}

bool dinic_bfs(int s, int t) {
    fill_n(vis, n, 0);
    queue<int> q;
    q.push(s);
    vis[s] = 1;
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        for (edge e : g[u]) {
            int v = e.v;
            if (vis[v] || !e.c) continue;
            if (dis[v] != dis[u] + e.w - pot[v] + pot[u]) continue;
            vis[v] = vis[u] + 1;
            q.push(v);
        }
    }
    return vis[t] != 0;
}

ll dinic_dfs(int u, int t, ll f) {
    if (u == t)
        return f;
    ll sf = 0;
    for (int& i = cur[u]; i != g[u].size(); ++i) {
        edge& e = g[u][i];
        int v = e.v;
        if (!e.c || vis[v] != vis[u] + 1) continue;
        if (dis[v] != dis[u] + e.w - pot[v] + pot[u]) continue;
        ll df = dinic_dfs(v, t, min(e.c, f));
        sf += df;
        f -= df;
        e.c -= df;
        g[v][e.p].c += df;
        if (!f) break;
    }
    return sf;
}

void initiate_potential() {
    queue<int> q;
    for (int i = 0; i < n; ++i)
        q.push(i), vis[i] = 1;
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        vis[u] = 0;
        for (edge e : g[u]) {
            ll dv = pot[u] + e.w;
            if (!e.c || dv >= pot[e.v]) continue;
            pot[e.v] = dv;
            if (!vis[e.v]) q.push(e.v), vis[e.v] = 1;
        }
    }
}

pair<ll, ll> mincostflow(int s, int t, ll mf = inf) {
    ll sf = 0, sc = 0;
    fill_n(pot + 1, n, 0);
    //  initiate_potential();
    while (dijkstra(s, t)) {
        ll f = 0;
        while (dinic_bfs(s, t)) {
            fill_n(cur, n, 0);
            ll df = dinic_dfs(s, t, mf);
            mf -= df;
            f += df;
            if (!mf) break;
        }
        sf += f;
        sc += (dis[t] + pot[t]) * f;
        for (int i = 0; i < n; ++i) pot[i] += dis[i];
        if (!mf) break;
    }
    return {sf, sc};
}

}  // namespace mcmf

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int n, m;
    cin >> n >> m;
    for (int i = 0; i < m; ++i) {
        int x, y;
        ll c, w;
        cin >> x >> y >> c >> w;
        mcmf::adde(x, y, c, w);
    }
    mcmf::n = n + 2;
    auto ans = mcmf::mincostflow(1, n);
    cout << ans.first << " " << ans.second << endl;
}

详细


Pretests


Final Tests

Test #1:

score: 10
Accepted
time: 1ms
memory: 3784kb

input:

8 27
2 3 2147483647 100
1 3 1 100
2 4 2147483647 10
1 4 1 10
2 4 2147483647 10
1 4 1 10
2 8 3 0
3 5 2147483647 100
1 5 1 100
3 8 1 0
3 2 2147483647 0
4 5 2147483647 10
1 5 1 10
4 8 1 0
4 2 2147483647 0
5 6 2147483647 1
1 6 1 1
5 6 2147483647 1
1 6 1 1
5 7 2147483647 1
1 7 1 1
5 8 3 0
5 2 2147483647 ...

output:

8 243

result:

ok 2 number(s): "8 243"

Test #2:

score: 10
Accepted
time: 0ms
memory: 3600kb

input:

12 49
2 10 2147483647 5
1 10 1 5
2 5 2147483647 50
1 5 1 50
2 9 2147483647 8
1 9 1 8
2 8 2147483647 47
1 8 1 47
2 11 2147483647 17
1 11 1 17
2 12 5 0
3 12 0 0
3 2 2147483647 0
4 6 2147483647 18
1 6 1 18
4 11 2147483647 12
1 11 1 12
4 9 2147483647 14
1 9 1 14
4 12 3 0
4 2 2147483647 0
5 11 2147483647...

output:

15 436

result:

ok 2 number(s): "15 436"

Test #3:

score: 10
Accepted
time: 1ms
memory: 3640kb

input:

27 169
2 15 2147483647 24
1 15 1 24
2 19 2147483647 96
1 19 1 96
2 12 2147483647 49
1 12 1 49
2 13 2147483647 75
1 13 1 75
2 24 2147483647 2
1 24 1 2
2 27 5 0
3 27 0 0
3 2 2147483647 0
4 11 2147483647 99
1 11 1 99
4 3 2147483647 85
1 3 1 85
4 27 2 0
4 2 2147483647 0
5 27 0 0
5 2 2147483647 0
6 9 214...

output:

60 4338

result:

ok 2 number(s): "60 4338"

Test #4:

score: 10
Accepted
time: 11ms
memory: 3804kb

input:

77 2149
2 42 2147483647 33
1 42 1 33
2 68 2147483647 30
1 68 1 30
2 76 2147483647 13
1 76 1 13
2 51 2147483647 93
1 51 1 93
2 12 2147483647 39
1 12 1 39
2 57 2147483647 74
1 57 1 74
2 70 2147483647 21
1 70 1 21
2 73 2147483647 24
1 73 1 24
2 52 2147483647 54
1 52 1 54
2 15 2147483647 99
1 15 1 99
2 ...

output:

1000 74606

result:

ok 2 number(s): "1000 74606"

Test #5:

score: 10
Accepted
time: 26ms
memory: 4064kb

input:

102 4199
2 48 2147483647 42
1 48 1 42
2 85 2147483647 50
1 85 1 50
2 22 2147483647 83
1 22 1 83
2 95 2147483647 97
1 95 1 97
2 82 2147483647 34
1 82 1 34
2 25 2147483647 72
1 25 1 72
2 4 2147483647 17
1 4 1 17
2 47 2147483647 10
1 47 1 10
2 71 2147483647 12
1 71 1 12
2 68 2147483647 39
1 68 1 39
2 2...

output:

2000 161420

result:

ok 2 number(s): "2000 161420"

Test #6:

score: 10
Accepted
time: 23ms
memory: 3844kb

input:

102 4199
2 79 2147483647 13
1 79 1 13
2 83 2147483647 73
1 83 1 73
2 75 2147483647 90
1 75 1 90
2 30 2147483647 92
1 30 1 92
2 54 2147483647 25
1 54 1 25
2 66 2147483647 53
1 66 1 53
2 52 2147483647 37
1 52 1 37
2 63 2147483647 46
1 63 1 46
2 11 2147483647 20
1 11 1 20
2 55 2147483647 53
1 55 1 53
2...

output:

2000 143072

result:

ok 2 number(s): "2000 143072"

Test #7:

score: 10
Accepted
time: 23ms
memory: 3864kb

input:

102 4199
2 39 2147483647 45
1 39 1 45
2 51 2147483647 11
1 51 1 11
2 86 2147483647 63
1 86 1 63
2 23 2147483647 46
1 23 1 46
2 48 2147483647 63
1 48 1 63
2 87 2147483647 8
1 87 1 8
2 73 2147483647 63
1 73 1 63
2 5 2147483647 52
1 5 1 52
2 80 2147483647 21
1 80 1 21
2 31 2147483647 44
1 31 1 44
2 101...

output:

2000 146132

result:

ok 2 number(s): "2000 146132"

Test #8:

score: 10
Accepted
time: 150ms
memory: 4160kb

input:

302 10599
2 72 2147483647 169
1 72 1 169
2 260 2147483647 165
1 260 1 165
2 12 2147483647 108
1 12 1 108
2 16 2147483647 26
1 16 1 26
2 28 2147483647 148
1 28 1 148
2 7 2147483647 74
1 7 1 74
2 139 2147483647 199
1 139 1 199
2 231 2147483647 9
1 231 1 9
2 287 2147483647 123
1 287 1 123
2 135 2147483...

output:

5000 1106316

result:

ok 2 number(s): "5000 1106316"

Test #9:

score: 10
Accepted
time: 197ms
memory: 4120kb

input:

302 10599
2 222 2147483647 132
1 222 1 132
2 17 2147483647 7
1 17 1 7
2 177 2147483647 253
1 177 1 253
2 90 2147483647 195
1 90 1 195
2 128 2147483647 289
1 128 1 289
2 42 2147483647 193
1 42 1 193
2 213 2147483647 133
1 213 1 133
2 263 2147483647 293
1 263 1 293
2 50 2147483647 155
1 50 1 155
2 228...

output:

5000 1290871

result:

ok 2 number(s): "5000 1290871"

Test #10:

score: 10
Accepted
time: 192ms
memory: 4108kb

input:

302 10599
2 176 2147483647 289
1 176 1 289
2 190 2147483647 99
1 190 1 99
2 10 2147483647 96
1 10 1 96
2 240 2147483647 165
1 240 1 165
2 273 2147483647 205
1 273 1 205
2 248 2147483647 194
1 248 1 194
2 220 2147483647 122
1 220 1 122
2 194 2147483647 167
1 194 1 167
2 8 2147483647 67
1 8 1 67
2 227...

output:

5000 1395897

result:

ok 2 number(s): "5000 1395897"