QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#719497 | #7559. Bocchi the Rock | maspy | AC ✓ | 871ms | 9252kb | C++23 | 33.2kb | 2024-11-07 02:04:04 | 2024-11-07 02:04:06 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/mod/mod_inv.hpp"
// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
if (mod == 0) return 0;
mod = abs(mod);
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 2 "/home/maspy/compro/library/mod/crt3.hpp"
constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
a %= mod;
u64 res = 1;
FOR(32) {
if (n & 1) res = res * a % mod;
a = a * a % mod, n /= 2;
}
return res;
}
template <typename T, u32 p0, u32 p1>
T CRT2(u64 a0, u64 a1) {
static_assert(p0 < p1);
static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
u64 c = (a1 - a0 + p1) * x0_1 % p1;
return a0 + c * p0;
}
template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
static_assert(p0 < p1 && p1 < p2);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
return T(ans_1) + T(c) * T(p01);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3>
T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = (a3 - ans_2 % p3 + p3) * x3 % p3;
return T(ans_2) + T(c) * T(p01) * T(p2);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4>
T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4);
static constexpr u64 p01 = u64(p0) * p1;
static constexpr u64 p23 = u64(p2) * p3;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3;
u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01;
c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4;
return T(ans_3) + T(c) * T(p01) * T(p23);
}
#line 2 "/home/maspy/compro/library/poly/convolution_naive.hpp"
template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vector<T> ans(n + m - 1);
FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
return ans;
}
template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vc<T> ans(n + m - 1);
if (n <= 16 && (T::get_mod() < (1 << 30))) {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u64 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = sm;
}
} else {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u128 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = T::raw(sm % T::get_mod());
}
}
return ans;
}
#line 2 "/home/maspy/compro/library/poly/convolution_karatsuba.hpp"
// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
const int thresh = 30;
if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
int n = max(len(f), len(g));
int m = ceil(n, 2);
vc<T> f1, f2, g1, g2;
if (len(f) < m) f1 = f;
if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
if (len(f) >= m) f2 = {f.begin() + m, f.end()};
if (len(g) < m) g1 = g;
if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
if (len(g) >= m) g2 = {g.begin() + m, g.end()};
vc<T> a = convolution_karatsuba(f1, g1);
vc<T> b = convolution_karatsuba(f2, g2);
FOR(i, len(f2)) f1[i] += f2[i];
FOR(i, len(g2)) g1[i] += g2[i];
vc<T> c = convolution_karatsuba(f1, g1);
vc<T> F(len(f) + len(g) - 1);
assert(2 * m + len(b) <= len(F));
FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
if (c.back() == T(0)) c.pop_back();
FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
return F;
}
#line 2 "/home/maspy/compro/library/poly/ntt.hpp"
template <class mint>
void ntt(vector<mint>& a, bool inverse) {
assert(mint::can_ntt());
const int rank2 = mint::ntt_info().fi;
const int mod = mint::get_mod();
static array<mint, 30> root, iroot;
static array<mint, 30> rate2, irate2;
static array<mint, 30> rate3, irate3;
assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().se;
iroot[rank2] = mint(1) / root[rank2];
FOR_R(i, rank2) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size());
int h = topbit(n);
assert(n == 1 << h);
if (!inverse) {
int len = 0;
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
FOR(s, 1 << len) {
int offset = s << (h - len);
FOR(i, p) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
rot *= rate2[topbit(~s & -~s)];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
u64 mod2 = u64(mod) * mod;
u64 a0 = a[i + offset].val;
u64 a1 = u64(a[i + offset + p].val) * rot.val;
u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
u64 na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
rot *= rate3[topbit(~s & -~s)];
}
len += 2;
}
}
} else {
mint coef = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= coef;
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
FOR(s, 1 << (len - 1)) {
int offset = s << (h - len + 1);
FOR(i, p) {
u64 l = a[i + offset].val;
u64 r = a[i + offset + p].val;
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * irot.val;
}
irot *= irate2[topbit(~s & -~s)];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = iroot[2];
FOR(s, (1 << (len - 2))) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
u64 a0 = a[i + offset + 0 * p].val;
u64 a1 = a[i + offset + 1 * p].val;
u64 a2 = a[i + offset + 2 * p].val;
u64 a3 = a[i + offset + 3 * p].val;
u64 x = (mod + a2 - a3) * iimag.val % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
}
irot *= irate3[topbit(~s & -~s)];
}
len -= 2;
}
}
}
}
#line 8 "/home/maspy/compro/library/poly/convolution.hpp"
template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
if (a.empty() || b.empty()) return {};
int n = int(a.size()), m = int(b.size());
int sz = 1;
while (sz < n + m - 1) sz *= 2;
// sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
if ((n + m - 3) <= sz / 2) {
auto a_last = a.back(), b_last = b.back();
a.pop_back(), b.pop_back();
auto c = convolution(a, b);
c.resize(n + m - 1);
c[n + m - 2] = a_last * b_last;
FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
return c;
}
a.resize(sz), b.resize(sz);
bool same = a == b;
ntt(a, 0);
if (same) {
b = a;
} else {
ntt(b, 0);
}
FOR(i, sz) a[i] *= b[i];
ntt(a, 1);
a.resize(n + m - 1);
return a;
}
template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
static constexpr int p0 = 167772161;
static constexpr int p1 = 469762049;
static constexpr int p2 = 754974721;
using mint0 = modint<p0>;
using mint1 = modint<p1>;
using mint2 = modint<p2>;
vc<mint0> a0(n), b0(m);
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
auto c0 = convolution_ntt<mint0>(a0, b0);
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
vc<mint> c(len(c0));
FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); }
return c;
}
vector<ll> convolution(vector<ll> a, vector<ll> b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (min(n, m) <= 2500) return convolution_naive(a, b);
ll mi_a = MIN(a), mi_b = MIN(b);
for (auto& x: a) x -= mi_a;
for (auto& x: b) x -= mi_b;
assert(MAX(a) * MAX(b) <= 1e18);
auto Ac = cumsum<ll>(a), Bc = cumsum<ll>(b);
vi res(n + m - 1);
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
res[k] += (t - s) * mi_a * mi_b;
res[k] += mi_a * (Bc[k - s + 1] - Bc[k - t + 1]);
res[k] += mi_b * (Ac[t] - Ac[s]);
}
static constexpr u32 MOD1 = 1004535809;
static constexpr u32 MOD2 = 1012924417;
using mint1 = modint<MOD1>;
using mint2 = modint<MOD2>;
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a1[i] = a[i], a2[i] = a[i];
FOR(i, m) b1[i] = b[i], b2[i] = b[i];
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
FOR(i, n + m - 1) { res[i] += CRT2<u64, MOD1, MOD2>(c1[i].val, c2[i].val); }
return res;
}
template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (mint::can_ntt()) {
if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
return convolution_ntt(a, b);
}
if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
return convolution_garner(a, b);
}
#line 6 "main.cpp"
using mint = modint998;
using poly = vc<mint>;
mint sub(string S) {
int N = len(S) / 2;
S += S[0];
vc<int> A(2 * N + 1, -1);
FOR(i, 2 * N + 1) {
if (S[i] == '?') A[i] = -1;
if (S[i] == 'B' || S[i] == 'P') A[i] = 0;
if (S[i] == 'R' || S[i] == 'Y') A[i] = 1;
}
using MAT = array<array<poly, 2>, 2>;
auto dfs = [&](auto& dfs, int L, int R) -> MAT {
if (R == L + 1) {
MAT ANS;
FOR(i, 2) FOR(j, 2) ANS[i][j].resize(3);
FOR(a, 2) FOR(b, 2) FOR(c, 2) {
if (A[2 * L + 0] != -1 && A[2 * L + 0] != a) continue;
if (A[2 * L + 1] != -1 && A[2 * L + 1] != b) continue;
if (A[2 * L + 2] != -1 && A[2 * L + 2] != c) continue;
if (a == c) {
ANS[a][c][1] += 1;
} else {
int k = (a == b ? 0 : 2);
ANS[a][c][k] += 1;
}
}
return ANS;
}
int M = (L + R) / 2;
auto F = dfs(dfs, L, M);
auto G = dfs(dfs, M, R);
MAT ANS;
FOR(i, 2) FOR(j, 2) ANS[i][j].resize(2 * (R - L) + 1);
FOR(a, 2) FOR(b, 2) FOR(c, 2) {
auto f = convolution<mint>(F[a][b], G[b][c]);
FOR(k, len(f)) ANS[a][c][k] += f[k];
}
return ANS;
};
auto mat = dfs(dfs, 0, N);
mint ans = 0;
FOR(i, 2) FOR(j, 2) ans += mat[i][j][N];
SHOW(S);
SHOW(ans);
return ans;
}
void solve() {
LL(N);
STR(S);
mint ANS = 0;
char c = S[0];
if (c != 'Y') {
S[0] = 'P';
ANS += sub(S);
}
if (c != 'P') {
S[0] = 'Y';
ANS += sub(S);
}
print(ANS);
}
signed main() { solve(); }
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3976kb
input:
2 ????
output:
12
result:
ok 1 number(s): "12"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3676kb
input:
3 ??YR?B
output:
4
result:
ok 1 number(s): "4"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3736kb
input:
5 YBYRPBYRYB
output:
0
result:
ok 1 number(s): "0"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3896kb
input:
10 PRPBPRPRPRPBYB?R?BY?
output:
3
result:
ok 1 number(s): "3"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3672kb
input:
10 ?R?R?BYB?R?R?B?B?BYR
output:
96
result:
ok 1 number(s): "96"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3684kb
input:
10 YRPRYRY???P?YB?BYRY?
output:
32
result:
ok 1 number(s): "32"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3664kb
input:
10 PBYBPRPBYRPBYRYBPRPB
output:
0
result:
ok 1 number(s): "0"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3936kb
input:
10 PBPRPRYBYRYRYB?B?RYB
output:
0
result:
ok 1 number(s): "0"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3764kb
input:
10 PRP?PBPRYR??Y?YRPB?R
output:
12
result:
ok 1 number(s): "12"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3660kb
input:
10 ?RYB??P??B?B?B???RPR
output:
416
result:
ok 1 number(s): "416"
Test #11:
score: 0
Accepted
time: 385ms
memory: 9196kb
input:
50000 YBPBYRPRPRPRPBPRPBPBPBYRPRPBPBYRPBPRYBYBPBPBPRPBPBYRYBYRPBYRYRPBYRYRYRPBYBYRPBPBYBYBPBYRPBPBYBYBYRPBPRYBPBYBPRPRYBPRPBYBPRPBYRPBYBPRYBPBPBYRYBYBYBPRYBYRPRPRPRPRYRYBPBPBPBPRPRYBYRYBPRPRPRPBYBPBPRYRPRPBYRPBYRYRPBYBYBPBYRYRPBPRYBPRYBPBPBYRPBPBYBYBPRPBYBYBYRYRPBPRPRPRPRPRYBPBPBPRYBYRPRPRYBYRPRPBYR...
output:
0
result:
ok 1 number(s): "0"
Test #12:
score: 0
Accepted
time: 393ms
memory: 9044kb
input:
50000 YRPBPBYRYRYRYBYBYRPBPBPBPBPBYRYBPBPRYBPBYRYRPRYBYBYBYRPRPBPBPRYRPBYBYBPBYRYRPRPBPBPBPRYBYBYRYRPRPRYBPRPBYRPBPRYRPRYBPRYBYBYRYRYBYRYRYBYRPBPBPBYBPBPRPBPRYRPRYBYBPBPRPBPBPRPRPBYRYRPBPBPBYRPBYBYBYRPBPRPBPRYBPRPRYBPRPBPBYRYRYRYBYRPRPRYBYBYBPBPRPBPRYRYRPRPRPBPBPRPRPBYBYRPRPRPBYBYRPBYBPRPRPRPRPRPBPB...
output:
0
result:
ok 1 number(s): "0"
Test #13:
score: 0
Accepted
time: 397ms
memory: 9168kb
input:
50000 PRPRYBPBYBYBPBYRPBYRYBPBPBPRPRPBYBYRPRPRPRPRPRYRYBYRPBPBPRYRPRPBPRPBPRPRPRPBYRYRYRPBYBYRYRPRPRPRPRYBYBYBYBPBPRPBPBPRYRPRYRPRPRYRPRPBPBYRYBPRPRYRPBPBYBYBPBYRPBPRYRPRYRYBPBPBPRPBPRPRPRYBPBPBYBYBPRYRPRYRPBYRYBYRYRPBYBPBPRPRYRPRYBYRPRPRYBYBYBPBYRYRYRYRYRYRPBYBYRYRYBYRPRYRPBPBYBYRYBPBYBPRYBPBYRYBPR...
output:
0
result:
ok 1 number(s): "0"
Test #14:
score: 0
Accepted
time: 400ms
memory: 9056kb
input:
50000 YRPRPBPRYRYRPRYBPBYRPRPBYRYRYRPBPBYRPRYBYBYBPRYRPBPRPBPBYRPRPRPBPBYBYBPRPRPRYRYRYBYRPBYBPBPRYBPRYBYBYBPBYBYBPBPBPRYRPRPBYRYBYRPRYBYRPRYRPRPRYRPBYRYRYBYRYRPRYRYRPBPRPBYRYRPBYRPBPBPBPRPBYBYBPRYBPBPBYRYRYBYRPRPBPRYBPRPBYRPBYBYBPBPRPBYRYRPRPBPRPBPBYRPRPBYRPRPRYRYRPBYBYBPBPBYBPBYBYRYBYRPBPBPBPRYRPB...
output:
0
result:
ok 1 number(s): "0"
Test #15:
score: 0
Accepted
time: 382ms
memory: 9032kb
input:
50000 YBPBYRPRYRPRPBPBYBYRPBYRPBPRPRPBPBPBYRYBYRPBYRYRPBYRPRPRYBPRYRYBYBPRPRYBYBPRPRPRYRPRYBPRPBYRPBYRPBYRPRPBPBPRPBPBYRYBPRPBPBPBPBYRYRPRPRYBYRPRYBYBYBYBYRYRPBPRYRYRPRYBPRPBPRPRPRPRPBPRPBYBPBPBPBYRPBYBPBPRPBYRPRPRYRYBYRPRPBPRYBYRPBPRPBPRYRPRYBYRYBYBPRPRPRPBYRPBPBYRYRPBPRYBPRYBPRYBPRYBYRPBYBPBPBYRPR...
output:
0
result:
ok 1 number(s): "0"
Test #16:
score: 0
Accepted
time: 37ms
memory: 4108kb
input:
5000 PR?BPB?BY?PRY??RPB?R??YBY?P?YRPBYBPRP?YBYBYRPRPB?BPBPR?RYR??Y??RYR?BPRYR?RPRP?Y?PRY?Y?YB??PBYRYR?RPB?BPB?BY?P?Y?YBY??RPB?BPRPBY???PRP?YB?R?RP?PR?BPB???R?B?RP?PBYB?BPRYBP?P??B?RPRP???P???PRYB?RYRP?Y??RPR?BP?PR?BPBPRYR?B??PB??YBPB?B?BY?YB?RY?PR?RYB???BYBP?Y??RYRYB?RYBYBPBYRYBP?YBYR?RPBYBY?YRP??R?...
output:
101508706
result:
ok 1 number(s): "101508706"
Test #17:
score: 0
Accepted
time: 35ms
memory: 4332kb
input:
5000 Y?P?PBYBYBPBYB?RYBPRPB?B??YRY??RP?PB??P??BYR?B?BP??R?R?R?BYBP??BY?Y?PBY?Y?YR?RY?PRPR?R?RPR?RPR?BYR?B?B?RPRPR?RP?Y?YRP?Y??RYB????YRY?YR?BP?YB?B??Y??B?RPBYR?RP????B?RPR??????P?PRPR?RP?PR?????BP?P?YB?BYRP?PBP?YBYB?RPR?R?B?BYRYR?RPBPBY??BYBPRYRPBPB?R?RPR?BYBP?YRY?PR?BPR?RY????BYBYB?RYRP???Y???PBY?Y...
output:
748282195
result:
ok 1 number(s): "748282195"
Test #18:
score: 0
Accepted
time: 35ms
memory: 4308kb
input:
5000 P?PRPRPBP??RYB??YBPBYRYB?BP?YB?B?BY??R?BYRP??BPRY?YBYB?RY????B??????PB?RP?P??R?BPB?BY?PR?RPBPBPR?BY?YB?BYBYRYBYRYBY?Y??RP?YR?R?R?BY?PBY??RYBPBYBYBY?PBY?P?YB?RYR???RY?YBY?YRYRY?PBY?P?PBYRPRY?PBP???PBYRPRY?Y?P?P?Y?PR???B?B?RP???PBY?P?PR???BP?PR????P?YB??YR??YRYBYR?B?BP??BPB??P?Y?PRYRY?YB??YR?RY?Y...
output:
24097861
result:
ok 1 number(s): "24097861"
Test #19:
score: 0
Accepted
time: 72ms
memory: 4184kb
input:
5000 ??PBPRYBPR??PRP?PRYBY???P?YRPBYBY?YR?RYR??Y?P?YRPR?BPBY?PRPRYB?RYBY?P?????YBPBYBY?Y??BY?PB???BP?P?Y???YR??YBP???YRYB?BPBPRP???PRY??B???BPB???R?RP?PB???BYRP?YB?BP??RP?PBYRPRPR??P??RY????B?????RP?YBYBPRYBYB?RYRYBP??RPB??YRPBY?PBPBP?YRYBPR?BPRYBPB???BYR?RY?PB?RYRY??BYRP?Y?YRP?PRPR????Y?PRPRYBP?YBP...
output:
447561693
result:
ok 1 number(s): "447561693"
Test #20:
score: 0
Accepted
time: 34ms
memory: 4164kb
input:
5000 P?P?P??????BPR?RY?PR??Y?Y??BPR??PB?B??PRP?YB???RPRPRPBY??R??PRYBYR?RPR?BP??R?B?RYRPRP??B?BYRY??R?RP???P?PRP??RY??RY?YBY???????P?Y?PBPRYBPRYRY?P?PB?BPR??P?Y?Y?Y?PR?RPB??Y??BYRP?PRPRY??R?RYBPR??YBP??B?RPRYBPR?BP??BYBYBPRYRPBPRPRY?Y?YBYRPBP?PB??Y?P??????R?BPBYR???BPR?B?R???BYR?BP?P?Y?YRY?PR??YBYB?...
output:
987042679
result:
ok 1 number(s): "987042679"
Test #21:
score: 0
Accepted
time: 33ms
memory: 4036kb
input:
5000 PRPBPRPRYRPRPBYBPBPBYRPBPBPBYRYRYBPBYRPRYBPBPRYBPBYRPRYBYRYRPBPBPBPBYRPBYRYBYRPRYBPBPBPRYBPRYBYBPRPBPBYRYBPRPBYRYRPRYBPRPRPBYRPBYRYRPRPRYRYRYBYBPBPBPBPRPRPBPRPRYRPBYRYRYRPBPRPRYRPRPBYBYBPBPRPRYRPBPRYBPRYBPRPRYRPRYRPBPRYBPRPRYBYRPBYRPRYBPRPRYBYRPRYRYBPRYBPRPBPRPRPRYBYRYRYRYRPBPRPBPRPBPRPBPRYRYBY...
output:
0
result:
ok 1 number(s): "0"
Test #22:
score: 0
Accepted
time: 33ms
memory: 4040kb
input:
5000 PRYRYBPBPRYRYRYRPBPBYBYRPBPBYRPRPRYBYRPRYRPBPRYBPBYRPRYRYRYBPBPBYBPBYBPBYRYRYRYRYBYRPRPBYRYBPRYBYBPRPRPBYRYRYRPBYBPBPRPRYRPRPBPRYBYBPBPBYBPBPBPRPBYRYRYRYRPRYBYBPBYBYBPBYBYRPRYRPRPRYBYRYBYRYRYBYBYRPBPRYRYRPRPRPRPRYRPRYRYRPBYBYRPBYBPBPRYBPBYBPBPRYRYRPBPRPRPBPRYRPRYBPBYRPRYBPBYRYBPRPRYRYBYBPRPBYBP...
output:
0
result:
ok 1 number(s): "0"
Test #23:
score: 0
Accepted
time: 33ms
memory: 4080kb
input:
5000 PBYRYRYBYBPBYBYBPBYBYRPRYBYRPRPBYRYBPRYBPRPRYRYRPBYRYRPRYRYBPBYBPBPRPBPRPBPBP?YRPBYBYBPRPRPBPRYRPRYBPRYRYBYRPRYBYBPBYRPBPBYBYRYBPRPBYRYBPBYBYRYRYRPRPRYBYBPRYRPRYBYBYBPRYBPBYRYBPBPRPRPBYBYRYBYRPRYBYBYBYBYBPBYRPRPRPRPRYBYRPRYRYRYBYRPBYRPBPRPRYBPBYBYRPRYBPRYBPRPRPRPBYRPRPBYRYBY?PRYRYRYBPRYRYBYRYBY...
output:
172032
result:
ok 1 number(s): "172032"
Test #24:
score: 0
Accepted
time: 70ms
memory: 4376kb
input:
5000 ????YRPB??PB??Y?Y??R??P?PRY?P??B??PBPBP???PRP??RY??RP?YRYB?R?BY?P??B?B??Y??R?RYRYRP???P?YBPR?R????YBP???P????R?R?BPR??Y?Y?YBP?Y??RY???PR??????P?P?Y??B?R?????B??Y?Y??BY??B?B???RYR???R?RY??RP?PR?RY?PB??Y?P?P???P??B?R??YR?BYRY??????R??Y??RYRPBYR??Y?P?P??B?RP?Y??B?BPBP?P???Y??B?RY?YBYB?RYRYRYBYB???...
output:
589400951
result:
ok 1 number(s): "589400951"
Test #25:
score: 0
Accepted
time: 69ms
memory: 4164kb
input:
5000 ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????...
output:
312356960
result:
ok 1 number(s): "312356960"
Test #26:
score: 0
Accepted
time: 411ms
memory: 8956kb
input:
50000 YR?BPR?BP??B??YBY?PRY?PRYB??PB?BPBY??R???RPR??Y?Y???PR???BPBPRPRY?Y?P?Y?P?YR??YR?RP?YRP??B?B???R??YR?BPR?B?R?R??Y?YBYRPR?BPBPRPRPB??YBPR??PR??Y??RYBY??RPRPB??YBPR??PBY?PBPBPRPRPRYRYB??YR?BYRP?P??RYR?R?R?RPBP?Y?YR??YBYR??YRYR???BPRPR???BP??B?BPBYBYBYR?B?RPRPBP?P?YBPB?R?BPBPR?BP?PRYRPB?BY?Y??B?B...
output:
61578469
result:
ok 1 number(s): "61578469"
Test #27:
score: 0
Accepted
time: 435ms
memory: 9136kb
input:
50000 Y??RPRP?PBYR?BPRPBYB??YBP?PBPB?????B?BYRYBPBYBPRPRYBP?P?YB?B??PBY?PB?R?RPR?RYBY?Y?PBY????B??YBYRPRY??BYR??PRPBP?P?P?Y?YBPRPBYBPRP???Y?P??RPBYBPBY??BY?Y?YRPB??Y?PBYB??P?Y?PRYBY?YBY??R?B??PR???BYRYB?RPBPBPBPR?RP??BYRYB?BP?PRP?P?YBPRP?PBYR???R?RPBP?P?YB?RPR?RYRP??B?RYRYRYBP??B???BYRYRPB??YRPRYBPB...
output:
21239954
result:
ok 1 number(s): "21239954"
Test #28:
score: 0
Accepted
time: 419ms
memory: 9172kb
input:
50000 YR??PB?BP???YRP??BYRPRP?P?PRPRPR?RPRPBYBPBY??B?B?RPRPBYRP??R?B??PR??P?PR?RYBPRPRY????R?R?RY??B?RYB?R?B?BYBPB??YRYRYBY?P?PR?B?RP??RP?YRPRYBPBYB?BYBP????RYRYR?BPRP?YRY?PB???BP??????BPR?RP?YBPB?RY?PBPBP??BYRP?YBYRP?YBYB?RPRYBYBP?YBY?YB?R??PBYBY?PB?R????P??BPRPRPRY???P???PBPRYRYB?RP?YBYRYRY????RP?...
output:
268137953
result:
ok 1 number(s): "268137953"
Test #29:
score: 0
Accepted
time: 407ms
memory: 9040kb
input:
50000 P???PR?RYBPB?RPBYB??YR??PB??YBPBP?Y?P??R?RYBPRPBYB??YB?R????YR?RPRPB?RYB?RPRP???PBYBY?YB?BYR??PR?B???B?R?RPR?RPR??PR?BYBPR????P???P?YRPR??P?PRYRYB?BYBY???P?PB?R??P??RYBPB?R?RYB???B????PRPRYR???BYRYR?B??PBP???PRP?P?YR??YRP??B?BY?Y?PRPRPRYRYRYRPRY?Y??RPBY?YR?BPRPB?R?BYR?BY??BY?P?Y?YBYRYBYRY?P??R...
output:
903429393
result:
ok 1 number(s): "903429393"
Test #30:
score: 0
Accepted
time: 413ms
memory: 8944kb
input:
50000 P??RPBYB?RP?Y??BPBPBPBYRPRPBYRP?YR??P?PBY?Y?????PRYBPBP?Y??BY??BPR?BYB???R?B??YBYRP??BP?YBPRP?YBP?P?Y?PR??YRPBYBPR?BPBY?PRY??RP???PRYBP?YRP?P??R??P?YBPR??P?PRYB?BPRYRYBP??BYB?RP??RPB??PR?R??YBPR?B??YBY?Y???P??BYRP????RYB?RYR?BP?YBP?P???P?PB??PR?RP?PR?R??P?YB?B??P?YRY?Y??RY?P?YBYBYRYRY?YRPBYBYB...
output:
360140728
result:
ok 1 number(s): "360140728"
Test #31:
score: 0
Accepted
time: 387ms
memory: 8972kb
input:
50000 PBYRYRYBYRYBYRPBYRPBPBYBYRYBYBPRPBYRYRYBYRPBPRYBYRYRYRYBYRYRYRPRYBYRPRPRPRYRPBYRPRPBYRPBYRYRPBYRYBPRYRPRYBYBYRYBPRPBYBPRPRPRYRPRYRPRYRPBYBPRPRYRYRPRPRPBYRYRYRPRPBPRPRYRYRYBYRYRYRPBYBYRPBPBYRPRPBPRYBPRPBYBPBPBPBYRYRPRPBYRPBYRYBPRPBYRYBPBPRPRPBYBPRYRPBYBYBYRPRYBYBYBPBYBPBPRYRYRYRPRYBYBYBPBPBYBPR...
output:
0
result:
ok 1 number(s): "0"
Test #32:
score: 0
Accepted
time: 391ms
memory: 9100kb
input:
50000 PRYRPBPRYRYBYRYBYRYRYRPRPBPRPRYBYBPBYRPRYRYRYRYRPBYBPRPRPRPRPRPRYBPRPBYBPBYBYBYRPRPBYBYBYBYBPRPBYBPBPRYRYBYBPBYRYBYRPBYRYRYRYBYBYRYBYRPRPBPBPBPBPBPRPRYBYRYRPBPRPRYBYRPRYRYRYRYRPRPRYRPBPRYRYRPBYBPRPBYRYRYBYRYBPRYBYRYRPRYBYBPRPBYRPBYBYRYRYRYBPBPRPBYBPBYRYBYRPBPBYBPRYBYRYBPBYRYRPBYBPBYBPRPBYBYRYB...
output:
0
result:
ok 1 number(s): "0"
Test #33:
score: 0
Accepted
time: 383ms
memory: 9084kb
input:
50000 PBPRPBYRPRYBYBYRPBPBYRPBPRPBPBPBYRPBYBYRPRYBPRPRYRYBPBPBYRPRYRYRPBYRYRPBPBYRPBPBYRPBYRYBYRYBYBYRYBPRPBYRYRYRPBYRPBYBPRYRYBPRYBYBYRPBPRYRYRYBYRPBPBPBPBPRYBYRPBYBYRYRYBYRYRYBYRPRYRPBYRPBPRYBYRPBPBYRYRPRYRYRYBPBYRPRPRPBPRPRYRPBPBYBPBPBYBYBYBPBYBPRPBYBYRPRPBYBPRPBPRPBYRPBPRYRPRYRYRYBPRPRPRYRPBYBPR...
output:
0
result:
ok 1 number(s): "0"
Test #34:
score: 0
Accepted
time: 858ms
memory: 9252kb
input:
50000 ?BY???P????RPB??P???YB?R?BY?YR????PR??P???????P?YRP?PRY?PB??Y?YR???B??Y?YR?BPRYR?B?B?BPRY?Y???PRY?PBYBPRP?Y?PBY?YRP?PR?R??PRYRY?Y?Y?Y?P?PBPB?RP?PRY?P???PRY???P???P???PB?B?B?B?B?BYBP?PR????P??BYRY??????R?B??P?????PBY??R?B??Y?YB??PBPB?B???R?BP??B?BPB?R????YR????YBP?P?YR????Y?PRPB??Y????R?R?RY??B...
output:
908700788
result:
ok 1 number(s): "908700788"
Test #35:
score: 0
Accepted
time: 871ms
memory: 9096kb
input:
50000 ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????...
output:
422064317
result:
ok 1 number(s): "422064317"