QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#719316 | #8526. Polygon II | maspy | AC ✓ | 1748ms | 4984kb | C++23 | 42.7kb | 2024-11-07 00:13:35 | 2024-11-07 00:13:36 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 2 "/home/maspy/compro/library/poly/count_terms.hpp"
template<typename mint>
int count_terms(const vc<mint>& f){
int t = 0;
FOR(i, len(f)) if(f[i] != mint(0)) ++t;
return t;
}
#line 2 "/home/maspy/compro/library/mod/mod_inv.hpp"
// long でも大丈夫
// (val * x - 1) が mod の倍数になるようにする
// 特に mod=0 なら x=0 が満たす
ll mod_inv(ll val, ll mod) {
if (mod == 0) return 0;
mod = abs(mod);
val %= mod;
if (val < 0) val += mod;
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
if (u < 0) u += mod;
return u;
}
#line 2 "/home/maspy/compro/library/mod/crt3.hpp"
constexpr u32 mod_pow_constexpr(u64 a, u64 n, u32 mod) {
a %= mod;
u64 res = 1;
FOR(32) {
if (n & 1) res = res * a % mod;
a = a * a % mod, n /= 2;
}
return res;
}
template <typename T, u32 p0, u32 p1>
T CRT2(u64 a0, u64 a1) {
static_assert(p0 < p1);
static constexpr u64 x0_1 = mod_pow_constexpr(p0, p1 - 2, p1);
u64 c = (a1 - a0 + p1) * x0_1 % p1;
return a0 + c * p0;
}
template <typename T, u32 p0, u32 p1, u32 p2>
T CRT3(u64 a0, u64 a1, u64 a2) {
static_assert(p0 < p1 && p1 < p2);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
return T(ans_1) + T(c) * T(p01);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3>
T CRT4(u64 a0, u64 a1, u64 a2, u64 a3) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 p01 = u64(p0) * p1;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = (a3 - ans_2 % p3 + p3) * x3 % p3;
return T(ans_2) + T(c) * T(p01) * T(p2);
}
template <typename T, u32 p0, u32 p1, u32 p2, u32 p3, u32 p4>
T CRT5(u64 a0, u64 a1, u64 a2, u64 a3, u64 a4) {
static_assert(p0 < p1 && p1 < p2 && p2 < p3 && p3 < p4);
static constexpr u64 x1 = mod_pow_constexpr(p0, p1 - 2, p1);
static constexpr u64 x2 = mod_pow_constexpr(u64(p0) * p1 % p2, p2 - 2, p2);
static constexpr u64 x3 = mod_pow_constexpr(u64(p0) * p1 % p3 * p2 % p3, p3 - 2, p3);
static constexpr u64 x4 = mod_pow_constexpr(u64(p0) * p1 % p4 * p2 % p4 * p3 % p4, p4 - 2, p4);
static constexpr u64 p01 = u64(p0) * p1;
static constexpr u64 p23 = u64(p2) * p3;
u64 c = (a1 - a0 + p1) * x1 % p1;
u64 ans_1 = a0 + c * p0;
c = (a2 - ans_1 % p2 + p2) * x2 % p2;
u128 ans_2 = ans_1 + c * static_cast<u128>(p01);
c = static_cast<u64>(a3 - ans_2 % p3 + p3) * x3 % p3;
u128 ans_3 = ans_2 + static_cast<u128>(c * p2) * p01;
c = static_cast<u64>(a4 - ans_3 % p4 + p4) * x4 % p4;
return T(ans_3) + T(c) * T(p01) * T(p23);
}
#line 2 "/home/maspy/compro/library/poly/convolution_naive.hpp"
template <class T, typename enable_if<!has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vector<T> ans(n + m - 1);
FOR(i, n) FOR(j, m) ans[i + j] += a[i] * b[j];
return ans;
}
template <class T, typename enable_if<has_mod<T>::value>::type* = nullptr>
vc<T> convolution_naive(const vc<T>& a, const vc<T>& b) {
int n = int(a.size()), m = int(b.size());
if (n > m) return convolution_naive<T>(b, a);
if (n == 0) return {};
vc<T> ans(n + m - 1);
if (n <= 16 && (T::get_mod() < (1 << 30))) {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u64 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = sm;
}
} else {
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
u128 sm = 0;
for (int i = s; i < t; ++i) { sm += u64(a[i].val) * (b[k - i].val); }
ans[k] = T::raw(sm % T::get_mod());
}
}
return ans;
}
#line 2 "/home/maspy/compro/library/poly/convolution_karatsuba.hpp"
// 任意の環でできる
template <typename T>
vc<T> convolution_karatsuba(const vc<T>& f, const vc<T>& g) {
const int thresh = 30;
if (min(len(f), len(g)) <= thresh) return convolution_naive(f, g);
int n = max(len(f), len(g));
int m = ceil(n, 2);
vc<T> f1, f2, g1, g2;
if (len(f) < m) f1 = f;
if (len(f) >= m) f1 = {f.begin(), f.begin() + m};
if (len(f) >= m) f2 = {f.begin() + m, f.end()};
if (len(g) < m) g1 = g;
if (len(g) >= m) g1 = {g.begin(), g.begin() + m};
if (len(g) >= m) g2 = {g.begin() + m, g.end()};
vc<T> a = convolution_karatsuba(f1, g1);
vc<T> b = convolution_karatsuba(f2, g2);
FOR(i, len(f2)) f1[i] += f2[i];
FOR(i, len(g2)) g1[i] += g2[i];
vc<T> c = convolution_karatsuba(f1, g1);
vc<T> F(len(f) + len(g) - 1);
assert(2 * m + len(b) <= len(F));
FOR(i, len(a)) F[i] += a[i], c[i] -= a[i];
FOR(i, len(b)) F[2 * m + i] += b[i], c[i] -= b[i];
if (c.back() == T(0)) c.pop_back();
FOR(i, len(c)) if (c[i] != T(0)) F[m + i] += c[i];
return F;
}
#line 2 "/home/maspy/compro/library/poly/ntt.hpp"
template <class mint>
void ntt(vector<mint>& a, bool inverse) {
assert(mint::can_ntt());
const int rank2 = mint::ntt_info().fi;
const int mod = mint::get_mod();
static array<mint, 30> root, iroot;
static array<mint, 30> rate2, irate2;
static array<mint, 30> rate3, irate3;
assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().se;
iroot[rank2] = mint(1) / root[rank2];
FOR_R(i, rank2) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size());
int h = topbit(n);
assert(n == 1 << h);
if (!inverse) {
int len = 0;
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
FOR(s, 1 << len) {
int offset = s << (h - len);
FOR(i, p) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
rot *= rate2[topbit(~s & -~s)];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
u64 mod2 = u64(mod) * mod;
u64 a0 = a[i + offset].val;
u64 a1 = u64(a[i + offset + p].val) * rot.val;
u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
u64 na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
rot *= rate3[topbit(~s & -~s)];
}
len += 2;
}
}
} else {
mint coef = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= coef;
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
FOR(s, 1 << (len - 1)) {
int offset = s << (h - len + 1);
FOR(i, p) {
u64 l = a[i + offset].val;
u64 r = a[i + offset + p].val;
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * irot.val;
}
irot *= irate2[topbit(~s & -~s)];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = iroot[2];
FOR(s, (1 << (len - 2))) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
u64 a0 = a[i + offset + 0 * p].val;
u64 a1 = a[i + offset + 1 * p].val;
u64 a2 = a[i + offset + 2 * p].val;
u64 a3 = a[i + offset + 3 * p].val;
u64 x = (mod + a2 - a3) * iimag.val % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
}
irot *= irate3[topbit(~s & -~s)];
}
len -= 2;
}
}
}
}
#line 8 "/home/maspy/compro/library/poly/convolution.hpp"
template <class mint>
vector<mint> convolution_ntt(vector<mint> a, vector<mint> b) {
if (a.empty() || b.empty()) return {};
int n = int(a.size()), m = int(b.size());
int sz = 1;
while (sz < n + m - 1) sz *= 2;
// sz = 2^k のときの高速化。分割統治的なやつで損しまくるので。
if ((n + m - 3) <= sz / 2) {
auto a_last = a.back(), b_last = b.back();
a.pop_back(), b.pop_back();
auto c = convolution(a, b);
c.resize(n + m - 1);
c[n + m - 2] = a_last * b_last;
FOR(i, len(a)) c[i + len(b)] += a[i] * b_last;
FOR(i, len(b)) c[i + len(a)] += b[i] * a_last;
return c;
}
a.resize(sz), b.resize(sz);
bool same = a == b;
ntt(a, 0);
if (same) {
b = a;
} else {
ntt(b, 0);
}
FOR(i, sz) a[i] *= b[i];
ntt(a, 1);
a.resize(n + m - 1);
return a;
}
template <typename mint>
vector<mint> convolution_garner(const vector<mint>& a, const vector<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
static constexpr int p0 = 167772161;
static constexpr int p1 = 469762049;
static constexpr int p2 = 754974721;
using mint0 = modint<p0>;
using mint1 = modint<p1>;
using mint2 = modint<p2>;
vc<mint0> a0(n), b0(m);
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a0[i] = a[i].val, a1[i] = a[i].val, a2[i] = a[i].val;
FOR(i, m) b0[i] = b[i].val, b1[i] = b[i].val, b2[i] = b[i].val;
auto c0 = convolution_ntt<mint0>(a0, b0);
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
vc<mint> c(len(c0));
FOR(i, n + m - 1) { c[i] = CRT3<mint, p0, p1, p2>(c0[i].val, c1[i].val, c2[i].val); }
return c;
}
vector<ll> convolution(vector<ll> a, vector<ll> b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (min(n, m) <= 2500) return convolution_naive(a, b);
ll mi_a = MIN(a), mi_b = MIN(b);
for (auto& x: a) x -= mi_a;
for (auto& x: b) x -= mi_b;
assert(MAX(a) * MAX(b) <= 1e18);
auto Ac = cumsum<ll>(a), Bc = cumsum<ll>(b);
vi res(n + m - 1);
for (int k = 0; k < n + m - 1; ++k) {
int s = max(0, k - m + 1);
int t = min(n, k + 1);
res[k] += (t - s) * mi_a * mi_b;
res[k] += mi_a * (Bc[k - s + 1] - Bc[k - t + 1]);
res[k] += mi_b * (Ac[t] - Ac[s]);
}
static constexpr u32 MOD1 = 1004535809;
static constexpr u32 MOD2 = 1012924417;
using mint1 = modint<MOD1>;
using mint2 = modint<MOD2>;
vc<mint1> a1(n), b1(m);
vc<mint2> a2(n), b2(m);
FOR(i, n) a1[i] = a[i], a2[i] = a[i];
FOR(i, m) b1[i] = b[i], b2[i] = b[i];
auto c1 = convolution_ntt<mint1>(a1, b1);
auto c2 = convolution_ntt<mint2>(a2, b2);
FOR(i, n + m - 1) { res[i] += CRT2<u64, MOD1, MOD2>(c1[i].val, c2[i].val); }
return res;
}
template <typename mint>
vc<mint> convolution(const vc<mint>& a, const vc<mint>& b) {
int n = len(a), m = len(b);
if (!n || !m) return {};
if (mint::can_ntt()) {
if (min(n, m) <= 50) return convolution_karatsuba<mint>(a, b);
return convolution_ntt(a, b);
}
if (min(n, m) <= 200) return convolution_karatsuba<mint>(a, b);
return convolution_garner(a, b);
}
#line 2 "/home/maspy/compro/library/poly/integrate.hpp"
// 不定積分:integrate(f)
// 定積分:integrate(f, L, R)
template <typename mint>
vc<mint> integrate(const vc<mint>& f) {
vc<mint> g(len(f) + 1);
FOR3(i, 1, len(g)) g[i] = f[i - 1] * inv<mint>(i);
return g;
}
// 不定積分:integrate(f)
// 定積分:integrate(f, L, R)
template <typename mint>
mint integrate(const vc<mint>& f, mint L, mint R) {
mint I = 0;
mint pow_L = 1, pow_R = 1;
FOR(i, len(f)) {
pow_L *= L, pow_R *= R;
I += inv<mint>(i + 1) * f[i] * (pow_R - pow_L);
}
return I;
}
#line 2 "/home/maspy/compro/library/poly/differentiate.hpp"
template <typename mint>
vc<mint> differentiate(const vc<mint>& f) {
if (len(f) <= 1) return {};
vc<mint> g(len(f) - 1);
FOR(i, len(g)) g[i] = f[i + 1] * mint(i + 1);
return g;
}
#line 6 "/home/maspy/compro/library/poly/fps_exp.hpp"
template <typename mint>
vc<mint> fps_exp_sparse(vc<mint>& f) {
if (len(f) == 0) return {mint(1)};
assert(f[0] == 0);
int N = len(f);
// df を持たせる
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i - 1, mint(i) * f[i]);
vc<mint> F(N);
F[0] = 1;
FOR(n, 1, N) {
mint rhs = 0;
for (auto&& [k, fk]: dat) {
if (k > n - 1) break;
rhs += fk * F[n - 1 - k];
}
F[n] = rhs * inv<mint>(n);
}
return F;
}
template <typename mint>
vc<mint> fps_exp_dense(vc<mint>& h) {
const int n = len(h);
assert(n > 0 && h[0] == mint(0));
if (mint::can_ntt()) {
vc<mint>& f = h;
vc<mint> b = {1, (1 < n ? f[1] : 0)};
vc<mint> c = {1}, z1, z2 = {1, 1};
while (len(b) < n) {
int m = len(b);
auto y = b;
y.resize(2 * m);
ntt(y, 0);
z1 = z2;
vc<mint> z(m);
FOR(i, m) z[i] = y[i] * z1[i];
ntt(z, 1);
FOR(i, m / 2) z[i] = 0;
ntt(z, 0);
FOR(i, m) z[i] *= -z1[i];
ntt(z, 1);
c.insert(c.end(), z.begin() + m / 2, z.end());
z2 = c;
z2.resize(2 * m);
ntt(z2, 0);
vc<mint> x(f.begin(), f.begin() + m);
FOR(i, len(x) - 1) x[i] = x[i + 1] * mint(i + 1);
x.back() = 0;
ntt(x, 0);
FOR(i, m) x[i] *= y[i];
ntt(x, 1);
FOR(i, m - 1) x[i] -= b[i + 1] * mint(i + 1);
x.resize(m + m);
FOR(i, m - 1) x[m + i] = x[i], x[i] = 0;
ntt(x, 0);
FOR(i, m + m) x[i] *= z2[i];
ntt(x, 1);
FOR_R(i, len(x) - 1) x[i + 1] = x[i] * inv<mint>(i + 1);
x[0] = 0;
FOR3(i, m, min(n, m + m)) x[i] += f[i];
FOR(i, m) x[i] = 0;
ntt(x, 0);
FOR(i, m + m) x[i] *= y[i];
ntt(x, 1);
b.insert(b.end(), x.begin() + m, x.end());
}
b.resize(n);
return b;
}
const int L = len(h);
assert(L > 0 && h[0] == mint(0));
int LOG = 0;
while (1 << LOG < L) ++LOG;
h.resize(1 << LOG);
auto dh = differentiate(h);
vc<mint> f = {1}, g = {1};
int m = 1;
vc<mint> p;
FOR(LOG) {
p = convolution(f, g);
p.resize(m);
p = convolution(p, g);
p.resize(m);
g.resize(m);
FOR(i, m) g[i] += g[i] - p[i];
p = {dh.begin(), dh.begin() + m - 1};
p = convolution(f, p);
p.resize(m + m - 1);
FOR(i, m + m - 1) p[i] = -p[i];
FOR(i, m - 1) p[i] += mint(i + 1) * f[i + 1];
p = convolution(p, g);
p.resize(m + m - 1);
FOR(i, m - 1) p[i] += dh[i];
p = integrate(p);
FOR(i, m + m) p[i] = h[i] - p[i];
p[0] += mint(1);
f = convolution(f, p);
f.resize(m + m);
m += m;
}
f.resize(L);
return f;
}
template <typename mint>
vc<mint> fps_exp(vc<mint>& f) {
int n = count_terms(f);
int t = (mint::can_ntt() ? 320 : 3000);
return (n <= t ? fps_exp_sparse<mint>(f) : fps_exp_dense<mint>(f));
}
#line 2 "/home/maspy/compro/library/poly/fps_log.hpp"
#line 4 "/home/maspy/compro/library/poly/fps_inv.hpp"
template <typename mint>
vc<mint> fps_inv_sparse(const vc<mint>& f) {
int N = len(f);
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);
vc<mint> g(N);
mint g0 = mint(1) / f[0];
g[0] = g0;
FOR(n, 1, N) {
mint rhs = 0;
for (auto&& [k, fk]: dat) {
if (k > n) break;
rhs -= fk * g[n - k];
}
g[n] = rhs * g0;
}
return g;
}
template <typename mint>
vc<mint> fps_inv_dense_ntt(const vc<mint>& F) {
vc<mint> G = {mint(1) / F[0]};
ll N = len(F), n = 1;
G.reserve(N);
while (n < N) {
vc<mint> f(2 * n), g(2 * n);
FOR(i, min(N, 2 * n)) f[i] = F[i];
FOR(i, n) g[i] = G[i];
ntt(f, false), ntt(g, false);
FOR(i, 2 * n) f[i] *= g[i];
ntt(f, true);
FOR(i, n) f[i] = 0;
ntt(f, false);
FOR(i, 2 * n) f[i] *= g[i];
ntt(f, true);
FOR(i, n, min(N, 2 * n)) G.eb(-f[i]);
n *= 2;
}
return G;
}
template <typename mint>
vc<mint> fps_inv_dense(const vc<mint>& F) {
if (mint::can_ntt()) return fps_inv_dense_ntt(F);
const int N = len(F);
vc<mint> R = {mint(1) / F[0]};
vc<mint> p;
int m = 1;
while (m < N) {
p = convolution(R, R);
p.resize(m + m);
vc<mint> f = {F.begin(), F.begin() + min(m + m, N)};
p = convolution(p, f);
R.resize(m + m);
FOR(i, m + m) R[i] = R[i] + R[i] - p[i];
m += m;
}
R.resize(N);
return R;
}
template <typename mint>
vc<mint> fps_inv(const vc<mint>& f) {
assert(f[0] != mint(0));
int n = count_terms(f);
int t = (mint::can_ntt() ? 160 : 820);
return (n <= t ? fps_inv_sparse<mint>(f) : fps_inv_dense<mint>(f));
}
#line 5 "/home/maspy/compro/library/poly/fps_log.hpp"
template <typename mint>
vc<mint> fps_log_dense(const vc<mint>& f) {
assert(f[0] == mint(1));
ll N = len(f);
vc<mint> df = f;
FOR(i, N) df[i] *= mint(i);
df.erase(df.begin());
auto f_inv = fps_inv(f);
auto g = convolution(df, f_inv);
g.resize(N - 1);
g.insert(g.begin(), 0);
FOR(i, N) g[i] *= inv<mint>(i);
return g;
}
template <typename mint>
vc<mint> fps_log_sparse(const vc<mint>& f) {
int N = f.size();
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);
vc<mint> F(N);
vc<mint> g(N - 1);
for (int n = 0; n < N - 1; ++n) {
mint rhs = mint(n + 1) * f[n + 1];
for (auto&& [i, fi]: dat) {
if (i > n) break;
rhs -= fi * g[n - i];
}
g[n] = rhs;
F[n + 1] = rhs * inv<mint>(n + 1);
}
return F;
}
template <typename mint>
vc<mint> fps_log(const vc<mint>& f) {
assert(f[0] == mint(1));
int n = count_terms(f);
int t = (mint::can_ntt() ? 200 : 1200);
return (n <= t ? fps_log_sparse<mint>(f) : fps_log_dense<mint>(f));
}
#line 5 "/home/maspy/compro/library/poly/fps_pow.hpp"
// fps の k 乗を求める。k >= 0 の前提である。
// 定数項が 1 で、k が mint の場合には、fps_pow_1 を使うこと。
// ・dense な場合: log, exp を使う O(NlogN)
// ・sparse な場合: O(NK)
template <typename mint>
vc<mint> fps_pow(const vc<mint>& f, ll k) {
assert(0 <= k);
int n = len(f);
if (k == 0) {
vc<mint> g(n);
g[0] = mint(1);
return g;
}
int d = n;
FOR_R(i, n) if (f[i] != 0) d = i;
// d * k >= n
if (d >= ceil<ll>(n, k)) {
vc<mint> g(n);
return g;
}
ll off = d * k;
mint c = f[d];
mint c_inv = mint(1) / mint(c);
vc<mint> g(n - off);
FOR(i, n - off) g[i] = f[d + i] * c_inv;
g = fps_pow_1(g, mint(k));
vc<mint> h(n);
c = c.pow(k);
FOR(i, len(g)) h[off + i] = g[i] * c;
return h;
}
template <typename mint>
vc<mint> fps_pow_1_sparse(const vc<mint>& f, mint K) {
int N = len(f);
assert(N == 0 || f[0] == mint(1));
vc<pair<int, mint>> dat;
FOR(i, 1, N) if (f[i] != mint(0)) dat.eb(i, f[i]);
vc<mint> g(N);
g[0] = 1;
FOR(n, N - 1) {
mint& x = g[n + 1];
for (auto&& [d, cf]: dat) {
if (d > n + 1) break;
mint t = cf * g[n - d + 1];
x += t * (K * mint(d) - mint(n - d + 1));
}
x *= inv<mint>(n + 1);
}
return g;
}
template <typename mint>
vc<mint> fps_pow_1_dense(const vc<mint>& f, mint K) {
assert(f[0] == mint(1));
auto log_f = fps_log(f);
FOR(i, len(f)) log_f[i] *= K;
return fps_exp_dense(log_f);
}
template <typename mint>
vc<mint> fps_pow_1(const vc<mint>& f, mint K) {
int n = count_terms(f);
int t = (mint::can_ntt() ? 100 : 1300);
return (n <= t ? fps_pow_1_sparse(f, K) : fps_pow_1_dense(f, K));
}
// f^e, sparse, O(NMK)
template <typename mint>
vvc<mint> fps_pow_1_sparse_2d(vvc<mint> f, mint n) {
assert(f[0][0] == mint(1));
int N = len(f), M = len(f[0]);
vv(mint, dp, N, M);
dp[0] = fps_pow_1_sparse<mint>(f[0], n);
vc<tuple<int, int, mint>> dat;
FOR(i, N) FOR(j, M) {
if ((i > 0 || j > 0) && f[i][j] != mint(0)) dat.eb(i, j, f[i][j]);
}
FOR(i, 1, N) {
FOR(j, M) {
// F = f^n, f dF = n df F
// [x^{i-1}y^j]
mint lhs = 0, rhs = 0;
for (auto&& [a, b, c]: dat) {
if (a < i && b <= j) lhs += dp[i - a][j - b] * mint(i - a);
if (a <= i && b <= j) rhs += dp[i - a][j - b] * c * mint(a);
}
dp[i][j] = (n * rhs - lhs) * inv<mint>(i);
}
}
return dp;
}
#line 5 "main.cpp"
/*
十分整理すると
{0,2^k}
[0,1] n
たちの和が K 以上になる確率は?
[0,1] n
これも sum(floor) について {0,1,...,n-1} を適切な確率分布ということにできる
*/
using mint = modint107;
mint sub(ll K, vc<int> CNT, ll N) {
// sum <= k+1
vc<mint> init(N + 1);
FOR(k, N + 1) {
mint ans = 0;
FOR(i, k + 2) {
mint vol = fact_inv<mint>(N) * mint(k + 1 - i).pow(N);
if (i % 2 == 0)
ans += C<mint>(N, i) * vol;
else
ans -= C<mint>(N, i) * vol;
}
init[k] = ans;
}
// floor(sum)==k
FOR_R(i, N) init[i + 1] -= init[i];
CNT.resize(61);
mint ANS = 0;
auto dfs = [&](auto& dfs, int k, ll K, vc<mint> f) -> void {
if (k > 60) {
assert(K == 1);
FOR(i, len(f)) if (i > 0) ANS += f[i];
return;
}
int n = CNT[k];
vc<mint> g = {inv<mint>(2), inv<mint>(2)};
g.resize(n + 1);
g = fps_pow<mint>(g, n);
f = convolution<mint>(f, g);
while (len(f) > K) { ANS += POP(f); }
if (f.empty()) return;
vc<mint> F(len(f));
if (K % 2 == 1) {
++K;
f.insert(f.begin(), 0);
}
FOR(i, len(f)) F[i / 2] += f[i];
while (len(F) && F.back() == 0) POP(F);
dfs(dfs, k + 1, K / 2, F);
};
dfs(dfs, 0, K, init);
SHOW(K, CNT, init);
SHOW(ANS);
return ANS;
}
void solve() {
LL(N);
int L = 51;
vc<int> F(L);
FOR(N) {
INT(x);
F[x]++;
}
mint ANS = 0;
FOR(x, L) {
if (F[x] == 0) continue;
F[x]--;
ll K = 0;
vc<int> CNT(L);
// 整数 [0,2^x-1]
FOR(i, x) CNT[i]++;
FOR(x, L) {
// 実数 を引く [0,2^x)
K += ll(F[x]) << x;
FOR(i, x) { CNT[i] += F[x]; }
}
mint p = sub(K, CNT, N);
F[x]++;
ANS += p * F[x];
}
ANS = mint(1) - ANS;
print(ANS);
}
signed main() { solve(); }
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3776kb
input:
3 0 2 0
output:
166666668
result:
ok 1 number(s): "166666668"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3908kb
input:
3 0 0 0
output:
500000004
result:
ok 1 number(s): "500000004"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3908kb
input:
3 5 6 7
output:
208333335
result:
ok 1 number(s): "208333335"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3852kb
input:
3 0 25 50
output:
889268532
result:
ok 1 number(s): "889268532"
Test #5:
score: 0
Accepted
time: 1ms
memory: 3860kb
input:
10 39 11 25 1 12 44 10 46 27 15
output:
913863330
result:
ok 1 number(s): "913863330"
Test #6:
score: 0
Accepted
time: 5ms
memory: 4036kb
input:
57 43 22 3 16 7 5 24 32 25 16 41 28 24 30 28 10 32 48 41 43 34 37 48 34 3 9 21 41 49 25 2 0 36 45 34 33 45 9 42 29 43 9 38 34 44 33 44 6 46 39 22 36 40 37 19 34 3
output:
400729664
result:
ok 1 number(s): "400729664"
Test #7:
score: 0
Accepted
time: 4ms
memory: 4240kb
input:
100 44 32 6 6 6 44 12 32 6 9 23 12 14 23 12 14 23 49 6 14 32 23 49 9 32 24 23 6 32 6 49 23 12 44 24 9 14 6 24 44 24 23 44 44 49 32 49 12 49 49 24 49 12 23 3 14 6 3 3 6 12 3 49 24 49 24 24 32 23 32 49 14 3 24 49 3 32 14 44 24 49 3 32 23 49 44 44 9 23 14 49 9 3 6 44 24 3 3 12 44
output:
32585394
result:
ok 1 number(s): "32585394"
Test #8:
score: 0
Accepted
time: 66ms
memory: 4208kb
input:
1000 2 27 0 0 27 0 2 0 27 0 27 27 0 0 0 0 0 2 0 27 0 2 2 0 27 27 0 0 0 27 2 2 2 27 0 2 27 2 0 2 27 0 0 27 0 27 0 0 27 2 27 2 2 27 2 27 0 0 27 0 27 0 2 27 2 2 0 27 27 27 27 0 27 0 27 0 2 2 0 2 2 27 0 0 27 0 0 27 0 2 27 27 2 27 2 0 0 2 27 27 27 27 27 27 2 2 0 2 2 0 2 2 0 27 0 27 2 2 0 27 27 0 0 27 2 2...
output:
94588769
result:
ok 1 number(s): "94588769"
Test #9:
score: 0
Accepted
time: 381ms
memory: 4676kb
input:
1000 40 14 47 3 32 18 3 49 22 23 32 18 23 24 18 32 23 39 32 27 49 49 22 50 50 22 23 47 14 47 50 32 22 24 49 49 18 22 18 22 50 3 32 47 40 3 39 22 24 47 32 49 49 22 32 39 14 49 39 3 32 22 24 18 39 49 24 18 40 23 23 49 39 39 18 39 27 49 14 27 27 14 18 24 39 22 40 50 18 18 18 39 39 18 23 23 22 3 49 47 2...
output:
626481946
result:
ok 1 number(s): "626481946"
Test #10:
score: 0
Accepted
time: 700ms
memory: 4536kb
input:
1000 28 32 35 9 21 11 43 23 45 15 23 2 8 3 39 41 31 9 45 35 27 14 40 28 31 9 31 9 9 40 8 6 27 43 3 27 23 49 27 6 28 25 11 9 15 27 38 27 12 28 25 2 15 27 45 6 27 1 21 38 1 25 27 21 49 31 31 14 39 39 8 39 40 28 15 31 21 14 43 38 11 8 8 23 9 11 15 2 11 39 32 14 28 15 40 49 27 9 23 9 9 6 21 2 2 1 14 11 ...
output:
644443122
result:
ok 1 number(s): "644443122"
Test #11:
score: 0
Accepted
time: 1371ms
memory: 4556kb
input:
972 39 15 23 0 40 29 43 47 6 9 30 9 2 8 19 9 45 25 26 38 33 18 6 33 44 48 24 8 4 16 33 42 33 31 36 33 13 16 3 12 21 19 1 30 24 23 43 35 0 33 31 32 23 31 36 12 26 0 29 48 28 33 28 28 3 49 9 5 29 8 29 28 49 41 33 49 5 49 6 9 50 25 39 11 1 36 6 44 10 34 32 31 25 31 36 36 3 9 50 35 47 43 25 46 30 18 5 2...
output:
684920840
result:
ok 1 number(s): "684920840"
Test #12:
score: 0
Accepted
time: 39ms
memory: 4288kb
input:
147 34 47 42 23 46 3 41 9 15 42 21 32 24 1 19 46 29 35 38 20 2 43 36 47 19 23 20 9 6 28 48 46 45 21 19 41 31 36 50 7 11 25 0 43 38 46 21 2 26 40 32 14 45 35 47 21 13 26 26 30 3 36 35 45 36 21 21 25 2 40 35 50 23 3 16 44 40 42 6 37 36 19 20 14 30 47 13 49 47 45 26 12 15 21 42 30 19 5 21 9 28 8 3 34 4...
output:
972735235
result:
ok 1 number(s): "972735235"
Test #13:
score: 0
Accepted
time: 1417ms
memory: 4552kb
input:
1000 36 15 9 5 35 37 17 30 24 13 18 32 14 35 36 26 23 7 21 15 43 15 21 11 33 33 9 16 5 26 1 45 48 27 20 20 20 48 42 27 22 7 39 35 11 38 33 47 22 34 43 4 32 0 47 35 48 8 9 3 40 3 27 22 20 43 12 37 30 18 2 37 37 35 44 3 42 14 20 24 44 5 17 38 46 41 28 23 21 7 13 15 35 38 21 14 6 37 37 6 13 34 32 13 23...
output:
179933029
result:
ok 1 number(s): "179933029"
Test #14:
score: 0
Accepted
time: 1443ms
memory: 4584kb
input:
1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7...
output:
540327646
result:
ok 1 number(s): "540327646"
Test #15:
score: 0
Accepted
time: 1432ms
memory: 4464kb
input:
1000 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 46 46 46 46 46 46 46 46 46 46 46 46 46 4...
output:
169647494
result:
ok 1 number(s): "169647494"
Test #16:
score: 0
Accepted
time: 1748ms
memory: 4916kb
input:
1000 11 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 40 50 50 50 50 50 21 50 12 50 50 50 50 50 0 50 50 50 38 50 50 50 50 50 50 25 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 7 50 50 50 50 50 50 50 50 ...
output:
862643524
result:
ok 1 number(s): "862643524"
Test #17:
score: 0
Accepted
time: 35ms
memory: 4960kb
input:
1000 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5...
output:
819612372
result:
ok 1 number(s): "819612372"
Test #18:
score: 0
Accepted
time: 66ms
memory: 4984kb
input:
1000 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 5...
output:
18215579
result:
ok 1 number(s): "18215579"
Test #19:
score: 0
Accepted
time: 1ms
memory: 3864kb
input:
16 0 2 24 1 23 9 14 17 28 29 25 27 15 19 11 20
output:
115090079
result:
ok 1 number(s): "115090079"
Test #20:
score: 0
Accepted
time: 18ms
memory: 3876kb
input:
1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...
output:
819612372
result:
ok 1 number(s): "819612372"
Test #21:
score: 0
Accepted
time: 1ms
memory: 4100kb
input:
18 9 4 21 5 22 6 9 16 3 14 11 2 0 12 6 3 7 21
output:
0
result:
ok 1 number(s): "0"
Extra Test:
score: 0
Extra Test Passed