QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#714777 | #8002. 字符树 | hos_lyric# | 0 | 0ms | 0kb | C++14 | 13.8kb | 2024-11-06 07:11:30 | 2024-11-06 07:11:30 |
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353U;
constexpr unsigned MO2 = 2U * MO;
constexpr int FFT_MAX = 23;
using Mint = ModInt<MO>;
constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U};
constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U};
constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U};
constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U};
// as[rev(i)] <- \sum_j \zeta^(ij) as[j]
void fft(Mint *as, int n) {
assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
int m = n;
if (m >>= 1) {
for (int i = 0; i < m; ++i) {
const unsigned x = as[i + m].x; // < MO
as[i + m].x = as[i].x + MO - x; // < 2 MO
as[i].x += x; // < 2 MO
}
}
if (m >>= 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned x = (prod * as[i + m]).x; // < MO
as[i + m].x = as[i].x + MO - x; // < 3 MO
as[i].x += x; // < 3 MO
}
prod *= FFT_RATIOS[__builtin_ctz(++h)];
}
}
for (; m; ) {
if (m >>= 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned x = (prod * as[i + m]).x; // < MO
as[i + m].x = as[i].x + MO - x; // < 4 MO
as[i].x += x; // < 4 MO
}
prod *= FFT_RATIOS[__builtin_ctz(++h)];
}
}
if (m >>= 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned x = (prod * as[i + m]).x; // < MO
as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO
as[i + m].x = as[i].x + MO - x; // < 3 MO
as[i].x += x; // < 3 MO
}
prod *= FFT_RATIOS[__builtin_ctz(++h)];
}
}
}
for (int i = 0; i < n; ++i) {
as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO
as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x; // < MO
}
}
// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
void invFft(Mint *as, int n) {
assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
int m = 1;
if (m < n >> 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO
as[i].x += as[i + m].x; // < 2 MO
as[i + m].x = (prod.x * y) % MO; // < MO
}
prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
}
m <<= 1;
}
for (; m < n >> 1; m <<= 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + (m >> 1); ++i) {
const unsigned long long y = as[i].x + MO2 - as[i + m].x; // < 4 MO
as[i].x += as[i + m].x; // < 4 MO
as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO
as[i + m].x = (prod.x * y) % MO; // < MO
}
for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO
as[i].x += as[i + m].x; // < 2 MO
as[i + m].x = (prod.x * y) % MO; // < MO
}
prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
}
}
if (m < n) {
for (int i = 0; i < m; ++i) {
const unsigned y = as[i].x + MO2 - as[i + m].x; // < 4 MO
as[i].x += as[i + m].x; // < 4 MO
as[i + m].x = y; // < 4 MO
}
}
const Mint invN = Mint(n).inv();
for (int i = 0; i < n; ++i) {
as[i] *= invN;
}
}
void fft(vector<Mint> &as) {
fft(as.data(), as.size());
}
void invFft(vector<Mint> &as) {
invFft(as.data(), as.size());
}
vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {
if (as.empty() || bs.empty()) return {};
const int len = as.size() + bs.size() - 1;
if (as.size() <= 16 || bs.size() <= 16) {
vector<Mint> cs(len, 0);
for (int i = 0; i < (int)as.size(); ++i) for (int j = 0; j < (int)bs.size(); ++j) {
cs[i + j] += as[i] * bs[j];
}
return cs;
}
int n = 1;
for (; n < len; n <<= 1) {}
as.resize(n); fft(as);
bs.resize(n); fft(bs);
for (int i = 0; i < n; ++i) as[i] *= bs[i];
invFft(as);
as.resize(len);
return as;
}
vector<Mint> square(vector<Mint> as) {
if (as.empty()) return {};
const int len = as.size() + as.size() - 1;
int n = 1;
for (; n < len; n <<= 1) {}
as.resize(n); fft(as);
for (int i = 0; i < n; ++i) as[i] *= as[i];
invFft(as);
as.resize(len);
return as;
}
// m := |as|, n := |bs|
// cs[k] = \sum[i-j=k] as[i] bs[j] (0 <= k <= m-n)
// transpose of ((multiply by bs): K^[0,m-n] -> K^[0,m-1])
vector<Mint> middle(vector<Mint> as, vector<Mint> bs) {
const int m = as.size(), n = bs.size();
assert(m >= n); assert(n >= 1);
int len = 1;
for (; len < m; len <<= 1) {}
as.resize(len, 0);
fft(as);
std::reverse(bs.begin(), bs.end());
bs.resize(len, 0);
fft(bs);
for (int i = 0; i < len; ++i) as[i] *= bs[i];
invFft(as);
as.resize(m);
as.erase(as.begin(), as.begin() + (n - 1));
return as;
}
////////////////////////////////////////////////////////////////////////////////
constexpr int LIM_INV = 6010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
void prepare() {
inv[1] = 1;
for (int i = 2; i < LIM_INV; ++i) {
inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
}
fac[0] = invFac[0] = 1;
for (int i = 1; i < LIM_INV; ++i) {
fac[i] = fac[i - 1] * i;
invFac[i] = invFac[i - 1] * inv[i];
}
}
Mint binom(Int n, Int k) {
if (n < 0) {
if (k >= 0) {
return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
} else if (n - k >= 0) {
return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
} else {
return 0;
}
} else {
if (0 <= k && k <= n) {
assert(n < LIM_INV);
return fac[n] * invFac[k] * invFac[n - k];
} else {
return 0;
}
}
}
////////////////////////////////////////////////////////////////////////////////
// a^e, 0 <= e < 2^32
struct Power {
static constexpr int E = 16;
vector<Mint> baby, giant;
Power() {}
explicit Power(Mint a) : baby((1 << E) + 1), giant(1 << E) {
baby[0] = 1;
for (int i = 1; i <= 1 << E; ++i) baby[i] = baby[i - 1] * a;
giant[0] = 1;
for (int i = 1; i < 1 << E; ++i) giant[i] = giant[i - 1] * baby[1 << E];
}
Mint operator()(unsigned e) const {
return giant[e >> E] * baby[e & ((1 << E) - 1)];
}
} two(2), invTwo(Mint(2).inv());
int N;
vector<int> A, B;
vector<vector<int>> graph;
vector<int> par, sz, leaf;
void dfs(int u, int p) {
par[u] = p;
sz[u] += 1;
if (graph[u].size() == 1) leaf[u] += 1;
for (const int v : graph[u]) if (p != v) {
dfs(v, u);
sz[u] += sz[v];
leaf[u] += leaf[v];
}
}
/*
no leaf is within its region
(a, b)
a: sz
b: # leaf
PIE 0 <= c <= b
forbidden path:
- from different region
- at least 1 endpoint is PIEed
(1/2)^((binom(\sum a, 2) - \sum binom(a, 2)) - (binom(\sum (a-c), 2) - \sum binom(a-c, 2)))
*/
int c2(int a) {
return a*(a-1)/2;
}
Mint calc(vector<pair<int, int>> fs) {
int sumA = 0, sumB = 0;
int sumA2 = 0;
vector<Mint> prod{1};
for (const auto &f : fs) {
const int a = f.first;
const int b = f.second;
sumA += a;
sumB += b;
sumA2 += c2(a);
vector<Mint> gs(b + 1);
for (int c = 0; c <= b; ++c) {
gs[c] = binom(b, c) * invTwo(c2(a-c));
}
prod = convolve(prod, gs);
}
Mint ret = 0;
for (int sumC = 0; sumC <= sumB; ++sumC) {
ret += (sumC&1?-1:+1) * two(c2(sumA-sumC)) * prod[sumC];
}
ret *= invTwo(c2(sumA) - sumA2);
// cerr<<"fs = "<<fs<<": ret = "<<(ret*Mint(2).pow(c2(N)))<<"/2^"<<c2(N)<<endl;
return ret;
}
int main() {
prepare();
for (; ~scanf("%d", &N); ) {
A.resize(N - 1);
B.resize(N - 1);
for (int i = 0; i < N - 1; ++i) {
scanf("%d%d", &A[i], &B[i]);
--A[i];
--B[i];
}
graph.assign(N, {});
for (int i = 0; i < N - 1; ++i) {
graph[A[i]].push_back(B[i]);
graph[B[i]].push_back(A[i]);
}
par.assign(N, -1);
sz.assign(N, 0);
leaf.assign(N, 0);
const int r = 0;
dfs(r, -1);
Mint ans = 0;
for (int u = 0; u < N; ++u) {
// each leaf can reach u
vector<pair<int, int>> fs;
fs.emplace_back(1, 0);
for (const int v : graph[u]) if (par[u] != v) {
fs.emplace_back(sz[v], leaf[v]);
}
// poly. product so far: O(N^2) in total
if (r != u) {
fs.emplace_back(sz[r] - sz[u], leaf[r] - leaf[u]);
}
ans += calc(fs);
}
for (int u = 0; u < N; ++u) if (r != u) {
// each leaf can reach both par[u] and u
vector<pair<int, int>> fs;
fs.emplace_back(sz[r] - sz[u], leaf[r] - leaf[u]);
fs.emplace_back(sz[u], leaf[u]);
ans -= calc(fs);
}
ans *= two(c2(N));
printf("%u\n", ans.x);
}
return 0;
}
详细
Pretests
Final Tests
Test #1:
score: 0
Runtime Error
input:
5 100 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 ...
output:
result:
Test #2:
score: 0
Runtime Error
input:
5 100 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 ...
output:
result:
Test #3:
score: 0
Runtime Error
input:
5 2000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 16 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 6...
output:
result:
Test #4:
score: 0
Runtime Error
input:
5 2000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 16 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 6...
output:
result:
Test #5:
score: 0
Runtime Error
input:
5 2000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 16 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 6...
output:
result:
Test #6:
score: 0
Runtime Error
input:
5 10000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1 ...
output:
result:
Test #7:
score: 0
Runtime Error
input:
5 10000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1 ...
output:
result:
Test #8:
score: 0
Runtime Error
input:
5 10000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1 ...
output:
result:
Test #9:
score: 0
Runtime Error
input:
5 100000 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 ...
output:
result:
Test #10:
score: 0
Runtime Error
input:
5 100000 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 ...
output:
result:
Test #11:
score: 0
Runtime Error
input:
5 100000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...
output:
result:
Test #12:
score: 0
Runtime Error
input:
5 100000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...
output:
result:
Test #13:
score: 0
Runtime Error
input:
5 100000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...
output:
result:
Test #14:
score: 0
Runtime Error
input:
5 100000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...
output:
result:
Test #15:
score: 0
Runtime Error
input:
5 100000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...
output:
result:
Test #16:
score: 0
Runtime Error
input:
5 100000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...
output:
result:
Test #17:
score: 0
Runtime Error
input:
5 500000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...
output:
result:
Test #18:
score: 0
Runtime Error
input:
5 500000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...
output:
result:
Test #19:
score: 0
Runtime Error
input:
5 500000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...
output:
result:
Test #20:
score: 0
Runtime Error
input:
5 500000 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 12 1 13 0 13 1 14 0 14 1 15 0 15 1 16 0 16 1 17 0 17 1 18 0 18 1 19 0 19 1 20 0 20 1 21 0 21 1 22 0 22 1 23 0 23 1 24 0 24 1 25 0 25 1 26 0 26 1 27 0 27 1 28 0 28 1 29 0 29 1 30 0 30 1 31 0 31 1...