QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#714025#9564. Hey, Have You Seen My Kangaroo?QingyuTL 5ms18228kbC++236.9kb2024-11-05 21:17:002024-11-05 21:17:01

Judging History

你现在查看的是最新测评结果

  • [2024-11-05 21:17:01]
  • 评测
  • 测评结果:TL
  • 用时:5ms
  • 内存:18228kb
  • [2024-11-05 21:17:00]
  • 提交

answer

#include<bits/stdc++.h>
using namespace std;
const int MAXN=200005;
const int MAXK=205;
const int INF=0x3f3f3f3f;
const int dir[4][2]= {{-1,0},{1,0},{0,-1},{0,1}};

vector<int> e[MAXN<<1|1];
void dfs0(int u,int lim,vector<int>& vec)
{
    if(u<lim)
    {
        vec.push_back(u);
        return;
    }
    for(auto& v : e[u])
        dfs0(v,lim,vec);
}

int vis[MAXN],fa[MAXN];
vector<vector<int>> cirs;
int dfs1(int u)
{
    vis[u]=1;
    for(auto v : e[u])
    {
        if(!vis[v])
        {
            fa[v]=u;
            if(dfs1(v))return 1;
        }
        else if(vis[v]==1)
        {
            vector<int> cir;
            cir.push_back(v);
            for(int c=u; c!=v; c=fa[c])
                cir.push_back(c);
            reverse(cir.begin(),cir.end());
            cirs.push_back(move(cir));
            return 1;
        }
    }
    vis[u]=2;
    return 0;
}

int dep[MAXN],add[MAXN],top[MAXN],son[MAXN];
void dfs2(int u)
{
    top[u]=1;
    for(auto v : e[u])
    {
        if(vis[v]>=0)continue;
        fa[v]=u,vis[v]=vis[u],dep[v]=dep[u]+1;
        if(dep[u])add[v]=add[u];
        dfs2(v);
        top[u]+=top[v];
        if(son[u]<0 || top[v]>top[son[u]])son[u]=v;
    }
}

void dfs3(int u,int t)
{
    top[u]=t;
    if(son[u]>=0)dfs3(son[u],t);
    for(auto v : e[u])
        if(v!=u && vis[v]==vis[u] && v!=son[u])dfs3(v,v);
}
pair<int,int> lcad(int u,int v)
{
    int du=u,dv=v;
    while(u!=v)
    {
        if(dep[u]>dep[v])du=u,u=fa[u];
        else dv=v,v=fa[v];
    }
    return make_pair(du,dv);
}

int las[MAXN];
vector<int> buc[MAXN];
int dfs4(int u,int clen,vector<pair<int,int>>& can)
{
    if(las[dep[u]]>=0)
        can.emplace_back(u,las[dep[u]]);
    las[dep[u]]=u;
    buc[(vis[u]+dep[u])%clen].push_back(u);
    int res=dep[u];
    for(auto v : e[u])
    {
        if(v==u || vis[v]!=vis[u])continue;
        res=max(res,dfs4(v,clen,can));
    }
    return res;
}

string grid[MAXN];
char opstr[MAXK];
int op[MAXK],res[MAXN];

struct DSU
{
    int fa[MAXN];
    void init(int n)
    {
        iota(fa,fa+n,0);
    }
    int find(int x)
    {
        return fa[x]==x ? x : fa[x]=find(fa[x]);
    }
    bool merge(int x,int y)
    {
        x=find(x),y=find(y);
        if(x==y)return 0;
        return fa[x]=y,1;
    }
} dsu;

int main()
{
    int n,m,k;
    scanf("%d%d%d%s",&n,&m,&k,opstr);
    for(int i=0; i<k; i++)
    {
        if(opstr[i]=='U')op[i]=0;
        if(opstr[i]=='D')op[i]=1;
        if(opstr[i]=='L')op[i]=2;
        if(opstr[i]=='R')op[i]=3;
    }
    for(int i=0; i<n; i++)
    {
        static char buff[MAXN];
        scanf("%s",buff);
        grid[i]=buff;
    }
    auto go=[&](int i,int j,int d)
    {
        int ti=i+dir[d][0],tj=j+dir[d][1];
        if(ti<0 || ti>=n || tj<0 || tj>=m || grid[ti][tj]!='1')ti=i,tj=j;
        return make_pair(ti,tj);
    };
    int cur=0;
    for(int i=0; i<n; i++)
        for(int j=0; j<m; j++)
        {
            if(grid[i][j]!='1')continue;
            ++cur;
            int ti=i,tj=j;
            for(int t=0; t<k; t++)
                tie(ti,tj)=go(ti,tj,op[t]);
            e[ti*m+tj].push_back(i*m+j);
        }
    fill(vis,vis+n*m,-1);
    for(int i=0, ts=0; i<n; i++)
        for(int j=0; j<m; j++)
        {
            if(grid[i][j]!='1')continue;
            vector<pair<int,int>> cur, tmp;
            for(auto v : e[i*m+j])
                cur.emplace_back(v,v);
            int rt=n*m;
            for(int t=0; t<k; t++,ts++)
            {
                int lim=rt;
                for(auto& [u,ur] : cur)
                {
                    auto [ux,uy]=go(u/m,u%m,op[t]);
                    if(vis[ux*m+uy]<ts)
                    {
                        vis[ux*m+uy]=ts;
                        las[ux*m+uy]=tmp.size();
                        tmp.emplace_back(ux*m+uy,ur);
                    }
                    else
                    {
                        if(tmp[las[ux*m+uy]].second<lim)
                        {
                            e[rt].push_back(tmp[las[ux*m+uy]].second);
                            tmp[las[ux*m+uy]].second=rt++;
                        }
                        e[tmp[las[ux*m+uy]].second].push_back(ur);
                    }
                }
                cur.swap(tmp);
                tmp.clear();
            }
            if(rt>n*m)
            {
                e[i*m+j].clear();
                dfs0(rt-1,n*m,e[i*m+j]);
                for(int t=n*m; t<rt; t++)
                    e[t].clear();
            }
        }
    fill(vis,vis+n*m,0);
    for(int i=0; i<n; i++)
        for(int j=0; j<m; j++)
            if(grid[i][j]=='1' && !vis[i*m+j])
                dfs1(i*m+j);
    fill(vis,vis+n*m,-1);
    fill(son,son+n*m,-1);
    fill(las,las+n*m,-1);
    vector<tuple<int,int,int>> edges;
    for(size_t c=0; c<cirs.size(); c++)
    {
        int clen=cirs[c].size();
        for(int i=0; i<clen; i++)
        {
            vis[cirs[c][i]]=i;
            int du=cirs[c][(i+1)%clen];
            for(auto& dv : e[cirs[c][i]])
            {
                if(dv==du)continue;
                int xu=du/m,yu=du%m,xv=dv/m,yv=dv%m;
                for(int t=0; t<k && (xu!=xv || yu!=yv); t++)
                {
                    ++add[dv];
                    tie(xu,yu)=go(xu,yu,op[t]);
                    tie(xv,yv)=go(xv,yv,op[t]);
                }
            }
        }
        for(int i=0; i<clen; i++)
        {
            dfs2(cirs[c][i]);
            dfs3(cirs[c][i],cirs[c][i]);
            vector<pair<int,int>> can;
            int d=dfs4(cirs[c][i],clen,can);
            fill(las,las+d+1,-1);
            for(auto& [u,v] : can)
            {
                auto [du,dv]=lcad(u,v);
                int step=(dep[u]-dep[du])*k;
                int xu=du/m,yu=du%m,xv=dv/m,yv=dv%m;
                for(int t=0; t<k && (xu!=xv || yu!=yv); t++)
                {
                    ++step;
                    tie(xu,yu)=go(xu,yu,op[t]);
                    tie(xv,yv)=go(xv,yv,op[t]);
                }
                edges.emplace_back(step,u,v);
            }
        }
        for(int i=0; i<clen; i++)
        {
            sort(buc[i].begin(),buc[i].end(),[&](int x,int y)
            {
                return (dep[x]-1)*k+add[x]<(dep[y]-1)*k+add[y];
            });
            for(size_t j=0; j+1<buc[i].size(); j++)
                edges.emplace_back((dep[buc[i][j+1]]-1)*k+add[buc[i][j+1]],buc[i][j],buc[i][j+1]);
            buc[i].clear();
        }
    }
    fill(res,res+n*m+1,INF);
    res[cur]=0;
    sort(edges.begin(),edges.end());
    dsu.init(n*m);
    for(auto& [t,u,v] : edges)
    {
        cur-=dsu.merge(u,v);
        res[cur]=min(res[cur],t);
    }
    for(int i=1; i<=n*m; i++)
    {
        res[i]=min(res[i],res[i-1]);
        printf("%d\n",res[i]<INF ? res[i] : -1);
    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 5ms
memory: 18228kb

input:

3 3 6
ULDDRR
010
111
010

output:

-1
4
2
1
0
0
0
0
0

result:

ok 9 numbers

Test #2:

score: 0
Accepted
time: 0ms
memory: 18148kb

input:

3 3 6
ULDDRR
010
111
011

output:

7
4
2
1
1
0
0
0
0

result:

ok 9 numbers

Test #3:

score: 0
Accepted
time: 0ms
memory: 14396kb

input:

1 5 1
R
11111

output:

4
3
2
1
0

result:

ok 5 number(s): "4 3 2 1 0"

Test #4:

score: -100
Time Limit Exceeded

input:

1 200000 200
RDRLDRULURDLDRULLRULLRRULRULRDLLDLRUDDLRURLURLULDRUUURDLUDUDLLLLLURRDURLUDDRRLRRURUUDDLLDDUUUDUULRLRUDULRRUURUDDDDLULULLLLLLLLLLLUDURLURLRLLRRRURUURLUDULDUULRRLULLRUDRDRUUDDRUDRDLLDLURDDDURLUULDRRDLDD
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111...

output:

3999923
3999865
3999864
3999740
3999729
3999728
3999727
3999726
3999725
3999724
3999723
3999665
3999664
3999540
3999529
3999528
3999527
3999526
3999525
3999524
3999523
3999465
3999464
3999340
3999329
3999328
3999327
3999326
3999325
3999324
3999323
3999265
3999264
3999140
3999129
3999128
3999127
3999...

result: