QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#713747#9581. 都市叠高shift#WA 92ms4084kbC++2012.1kb2024-11-05 20:26:172024-11-05 20:26:21

Judging History

你现在查看的是最新测评结果

  • [2024-11-05 20:26:21]
  • 评测
  • 测评结果:WA
  • 用时:92ms
  • 内存:4084kb
  • [2024-11-05 20:26:17]
  • 提交

answer

#include <bits/stdc++.h>

using i64 = long long;
using u64 = unsigned long long;

template<class T>
struct Point {
    T x;
    T y;
    Point(T x_ = 0, T y_ = 0) : x(x_), y(y_) {}
    
    template<class U>
    operator Point<U>() {
        return Point<U>(U(x), U(y));
    }
    Point &operator+=(Point p) & {
        x += p.x;
        y += p.y;
        return *this;
    }
    Point &operator-=(Point p) & {
        x -= p.x;
        y -= p.y;
        return *this;
    }
    Point &operator*=(T v) & {
        x *= v;
        y *= v;
        return *this;
    }
    Point operator-() const {
        return Point(-x, -y);
    }
    friend Point operator+(Point a, Point b) {
        return a += b;
    }
    friend Point operator-(Point a, Point b) {
        return a -= b;
    }
    friend Point operator*(Point a, T b) {
        return a *= b;
    }
    friend Point operator*(T a, Point b) {
        return b *= a;
    }
    friend bool operator==(Point a, Point b) {
        return a.x == b.x && a.y == b.y;
    }
    friend std::istream &operator>>(std::istream &is, Point &p) {
        return is >> p.x >> p.y;
    }
    friend std::ostream &operator<<(std::ostream &os, Point p) {
        return os << "(" << p.x << ", " << p.y << ")";
    }
};

template<class T>
T dot(Point<T> a, Point<T> b) {
    return a.x * b.x + a.y * b.y;
}

template<class T>
T cross(Point<T> a, Point<T> b) {
    return a.x * b.y - a.y * b.x;
}

template<class T>
T square(Point<T> p) {
    return dot(p, p);
}

template<class T>
long double length(Point<T> p) {
    return std::sqrt(square(p));
}

long double length(Point<long double> p) {
    return std::sqrt(square(p));
}

// 极角排序
template<class T>
bool cmp(const Point<T> &i, const Point<T> &j) {
    if(sgn(i) != sgn(j)) {
        return sgn(i) == 1;
    } else {
        return cross(i, j) > 0;
    }
}

template<class T>
struct Line {
    Point<T> a;
    Point<T> b;
    Line(Point<T> a_ = Point<T>(), Point<T> b_ = Point<T>()) : a(a_), b(b_) {}
};

template<class T>
Point<T> rotate(Point<T> a) {
    return Point(-a.y, a.x);
}

template<class T>
int sgn(Point<T> a) {
    return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}

// 点到直线距离
template<typename T>
T Point_to_Line(Point<T> x, Line<T> l) {
    auto v1 = l.b - l.a, v2 = x - l.a;
    return sqrt(cross(v1, v2) * cross(v1, v2) / dot(v1, v1));
}

template<class T>
bool pointOnLineLeft(Point<T> p, Line<T> l) {
    return cross(l.b - l.a, p - l.a) > 0;
}

template<class T>
Point<T> lineIntersection(Line<T> l1, Line<T> l2) {
    return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}

template<class T>
bool pointOnSegment(Point<T> p, Line<T> l) {
    return cross(p - l.a, l.b - l.a) == 0 && std::min(l.a.x, l.b.x) <= p.x && p.x <= std::max(l.a.x, l.b.x)
    && std::min(l.a.y, l.b.y) <= p.y && p.y <= std::max(l.a.y, l.b.y);
}

template<class T>
bool pointInPolygon(Point<T> a, std::vector<Point<T>> p) {
    int n = p.size();
    for (int i = 0; i < n; i++) {
        if (pointOnSegment(a, Line(p[i], p[(i + 1) % n]))) {
            return true;
        }
    }
    
    int t = 0;
    for (int i = 0; i < n; i++) {
        auto u = p[i];
        auto v = p[(i + 1) % n];
        if (u.x < a.x && v.x >= a.x && pointOnLineLeft(a, Line(v, u))) {
            t ^= 1;
        }
        if (u.x >= a.x && v.x < a.x && pointOnLineLeft(a, Line(u, v))) {
            t ^= 1;
        }
    }
    
    return t == 1;
}

// 0 : not intersect
// 1 : strictly intersect
// 2 : overlap
// 3 : intersect at endpoint
template<class T>
std::tuple<int, Point<T>, Point<T>> segmentIntersection(Line<T> l1, Line<T> l2) {
    if (std::max(l1.a.x, l1.b.x) < std::min(l2.a.x, l2.b.x)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::min(l1.a.x, l1.b.x) > std::max(l2.a.x, l2.b.x)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::max(l1.a.y, l1.b.y) < std::min(l2.a.y, l2.b.y)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (std::min(l1.a.y, l1.b.y) > std::max(l2.a.y, l2.b.y)) {
        return {0, Point<T>(), Point<T>()};
    }
    if (cross(l1.b - l1.a, l2.b - l2.a) == 0) {
        if (cross(l1.b - l1.a, l2.a - l1.a) != 0) {
            return {0, Point<T>(), Point<T>()};
        } else {
            auto maxx1 = std::max(l1.a.x, l1.b.x);
            auto minx1 = std::min(l1.a.x, l1.b.x);
            auto maxy1 = std::max(l1.a.y, l1.b.y);
            auto miny1 = std::min(l1.a.y, l1.b.y);
            auto maxx2 = std::max(l2.a.x, l2.b.x);
            auto minx2 = std::min(l2.a.x, l2.b.x);
            auto maxy2 = std::max(l2.a.y, l2.b.y);
            auto miny2 = std::min(l2.a.y, l2.b.y);
            Point<T> p1(std::max(minx1, minx2), std::max(miny1, miny2));
            Point<T> p2(std::min(maxx1, maxx2), std::min(maxy1, maxy2));
            if (!pointOnSegment(p1, l1)) {
                std::swap(p1.y, p2.y);
            }
            if (p1 == p2) {
                return {3, p1, p2};
            } else {
                return {2, p1, p2};
            }
        }
    }
    auto cp1 = cross(l2.a - l1.a, l2.b - l1.a);
    auto cp2 = cross(l2.a - l1.b, l2.b - l1.b);
    auto cp3 = cross(l1.a - l2.a, l1.b - l2.a);
    auto cp4 = cross(l1.a - l2.b, l1.b - l2.b);
    
    if ((cp1 > 0 && cp2 > 0) || (cp1 < 0 && cp2 < 0) || (cp3 > 0 && cp4 > 0) || (cp3 < 0 && cp4 < 0)) {
        return {0, Point<T>(), Point<T>()};
    }
    
    Point p = lineIntersection(l1, l2);
    if (cp1 != 0 && cp2 != 0 && cp3 != 0 && cp4 != 0) {
        return {1, p, p};
    } else {
        return {3, p, p};
    }
}

template<class T>
bool segmentInPolygon(Line<T> l, std::vector<Point<T>> p) {
    int n = p.size();
    if (!pointInPolygon(l.a, p)) {
        return false;
    }
    if (!pointInPolygon(l.b, p)) {
        return false;
    }
    for (int i = 0; i < n; i++) {
        auto u = p[i];
        auto v = p[(i + 1) % n];
        auto w = p[(i + 2) % n];
        auto [t, p1, p2] = segmentIntersection(l, Line(u, v));
        
        if (t == 1) {
            return false;
        }
        if (t == 0) {
            continue;
        }
        if (t == 2) {
            if (pointOnSegment(v, l) && v != l.a && v != l.b) {
                if (cross(v - u, w - v) > 0) {
                    return false;
                }
            }
        } else {
            if (p1 != u && p1 != v) {
                if (pointOnLineLeft(l.a, Line(v, u))
                    || pointOnLineLeft(l.b, Line(v, u))) {
                    return false;
                }
            } else if (p1 == v) {
                if (l.a == v) {
                    if (pointOnLineLeft(u, l)) {
                        if (pointOnLineLeft(w, l)
                            && pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, l)
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                } else if (l.b == v) {
                    if (pointOnLineLeft(u, Line(l.b, l.a))) {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            && pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                } else {
                    if (pointOnLineLeft(u, l)) {
                        if (pointOnLineLeft(w, Line(l.b, l.a))
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    } else {
                        if (pointOnLineLeft(w, l)
                            || pointOnLineLeft(w, Line(u, v))) {
                            return false;
                        }
                    }
                }
            }
        }
    }
    return true;
}

template<class T>
std::vector<Point<T>> hp(std::vector<Line<T>> lines) {
    std::sort(lines.begin(), lines.end(), [&](auto l1, auto l2) {
        auto d1 = l1.b - l1.a;
        auto d2 = l2.b - l2.a;
        
        if (sgn(d1) != sgn(d2)) {
            return sgn(d1) == 1;
        }
        
        return cross(d1, d2) > 0;
    });
    
    std::deque<Line<T>> ls;
    std::deque<Point<T>> ps;
    for (auto l : lines) {
        if (ls.empty()) {
            ls.push_back(l);
            continue;
        }
        
        while (!ps.empty() && !pointOnLineLeft(ps.back(), l)) {
            ps.pop_back();
            ls.pop_back();
        }
        
        while (!ps.empty() && !pointOnLineLeft(ps[0], l)) {
            ps.pop_front();
            ls.pop_front();
        }
        
        if (cross(l.b - l.a, ls.back().b - ls.back().a) == 0) {
            if (dot(l.b - l.a, ls.back().b - ls.back().a) > 0) {
                
                if (!pointOnLineLeft(ls.back().a, l)) {
                    assert(ls.size() == 1);
                    ls[0] = l;
                }
                continue;
            }
            return {};
        }
        
        ps.push_back(lineIntersection(ls.back(), l));
        ls.push_back(l);
    }
    
    while (!ps.empty() && !pointOnLineLeft(ps.back(), ls[0])) {
        ps.pop_back();
        ls.pop_back();
    }
    if (ls.size() <= 2) {
        return {};
    }
    ps.push_back(lineIntersection(ls[0], ls.back()));
    
    return std::vector(ps.begin(), ps.end());
}

template<typename T>
std::vector<Point<T>> getHull(std::vector<Point<T>> p) {
    std::vector<Point<T>> h, l;
    
    std::sort(p.begin(), p.end(), [&](auto a, auto b) {
        if (a.x != b.x) {
            return a.x < b.x;
        } else {
            return a.y < b.y;
        }
    });
    
    p.erase(std::unique(p.begin(), p.end()), p.end());
    if (p.size() <= 1) {
        return p;
    }
    
    for (auto a : p) {
        while (h.size() > 1 && cross(a - h.back(), a - h[h.size() - 2]) <= 0) {
            h.pop_back();
        }
        while (l.size() > 1 && cross(a - l.back(), a - l[l.size() - 2]) >= 0) {
            l.pop_back();
        }
        l.push_back(a);
        h.push_back(a);
    }
    
    l.pop_back();
    std::reverse(h.begin(), h.end());
    h.pop_back();
    l.insert(l.end(), h.begin(), h.end());
    return l;
}

template<typename T>
i64 r(std::vector<Point<T>> h) {
    if(h.size() <= 1) return 0;
    if(h.size() == 2) {
        return square(h[0] - h[1]);
    }

    auto area = [&](Point<T> &a, Point<T> &b, Point<T> &c) -> i64 {
        return cross(c - a, c - b);
    };
    
    T ans = 0;
    for(int i = 0, j = 1, n = h.size(); i < n; i ++) {
        ans = std::max({ans, square(h[j] - h[i]), square(h[j] - h[(i + 1) % n])});

        while(area(h[(j + 1) % n], h[i], h[(i + 1) % n]) >= area(h[j], h[i], h[(i + 1) % n])) {
            j = (j + 1) % n;
            ans = std::max({ans, square(h[j] - h[i]), square(h[j] - h[(i + 1) % n] )});
        }
    }
    return ans;
}

void solve() {
    int n;
    std::cin >> n;

    std::vector<long double> dp(n);
    std::vector<Point<i64>> h(n);
    for(int i = 0; i < n; i ++ ) {
        std::cin >> h[i];
        
        for(int j = 1; j < i; j ++ ) {
            dp[j] = std::max(dp[j - 1], dp[j]);
        }
        for(int j = 0; j < i; j ++ ) {
            dp[i] = std::max(dp[i], (j ? dp[j - 1] : 0) + sqrtl(square(h[i] - h[j])));
        }
    }
    
    std::cout << std::fixed << std::setprecision(8) << dp[n - 1] << '\n';

}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    int T = 1;
    // std::cin >> T;

    while(T -- ) {
        solve();
    }

    return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 1ms
memory: 3936kb

input:

7
1 0
0 1
0 0
1 1
1 2
3 2
3 3

output:

5.65685425

result:

ok found '5.6568543', expected '5.6568542', error '0.0000000'

Test #2:

score: -100
Wrong Answer
time: 92ms
memory: 4084kb

input:

4741
583042625 -288151442
901234470 -999760464
-974135773 -819820344
562644007 892707743
-120734580 -288167839
-14369253 88358276
-150949453 -39424771
-947214734 -826830020
578141361 443534304
-783950948 394211236
861595911 -751206580
570425640 624990919
484450011 -470115909
-417437663 22205205
-278...

output:

2798572306732.01244569

result:

wrong answer 1st numbers differ - expected: '2798587991989.8847656', found: '2798572306732.0122070', error = '0.0000056'