QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#713722 | #9581. 都市叠高 | shift# | WA | 55ms | 3884kb | C++20 | 12.0kb | 2024-11-05 20:22:53 | 2024-11-05 20:22:53 |
Judging History
answer
#include <bits/stdc++.h>
using i64 = long long;
using u64 = unsigned long long;
template<class T>
struct Point {
T x;
T y;
Point(T x_ = 0, T y_ = 0) : x(x_), y(y_) {}
template<class U>
operator Point<U>() {
return Point<U>(U(x), U(y));
}
Point &operator+=(Point p) & {
x += p.x;
y += p.y;
return *this;
}
Point &operator-=(Point p) & {
x -= p.x;
y -= p.y;
return *this;
}
Point &operator*=(T v) & {
x *= v;
y *= v;
return *this;
}
Point operator-() const {
return Point(-x, -y);
}
friend Point operator+(Point a, Point b) {
return a += b;
}
friend Point operator-(Point a, Point b) {
return a -= b;
}
friend Point operator*(Point a, T b) {
return a *= b;
}
friend Point operator*(T a, Point b) {
return b *= a;
}
friend bool operator==(Point a, Point b) {
return a.x == b.x && a.y == b.y;
}
friend std::istream &operator>>(std::istream &is, Point &p) {
return is >> p.x >> p.y;
}
friend std::ostream &operator<<(std::ostream &os, Point p) {
return os << "(" << p.x << ", " << p.y << ")";
}
};
template<class T>
T dot(Point<T> a, Point<T> b) {
return a.x * b.x + a.y * b.y;
}
template<class T>
T cross(Point<T> a, Point<T> b) {
return a.x * b.y - a.y * b.x;
}
template<class T>
T square(Point<T> p) {
return dot(p, p);
}
template<class T>
long double length(Point<T> p) {
return std::sqrt(square(p));
}
long double length(Point<long double> p) {
return std::sqrt(square(p));
}
// 极角排序
template<class T>
bool cmp(const Point<T> &i, const Point<T> &j) {
if(sgn(i) != sgn(j)) {
return sgn(i) == 1;
} else {
return cross(i, j) > 0;
}
}
template<class T>
struct Line {
Point<T> a;
Point<T> b;
Line(Point<T> a_ = Point<T>(), Point<T> b_ = Point<T>()) : a(a_), b(b_) {}
};
template<class T>
Point<T> rotate(Point<T> a) {
return Point(-a.y, a.x);
}
template<class T>
int sgn(Point<T> a) {
return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}
// 点到直线距离
template<typename T>
T Point_to_Line(Point<T> x, Line<T> l) {
auto v1 = l.b - l.a, v2 = x - l.a;
return sqrt(cross(v1, v2) * cross(v1, v2) / dot(v1, v1));
}
template<class T>
bool pointOnLineLeft(Point<T> p, Line<T> l) {
return cross(l.b - l.a, p - l.a) > 0;
}
template<class T>
Point<T> lineIntersection(Line<T> l1, Line<T> l2) {
return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}
template<class T>
bool pointOnSegment(Point<T> p, Line<T> l) {
return cross(p - l.a, l.b - l.a) == 0 && std::min(l.a.x, l.b.x) <= p.x && p.x <= std::max(l.a.x, l.b.x)
&& std::min(l.a.y, l.b.y) <= p.y && p.y <= std::max(l.a.y, l.b.y);
}
template<class T>
bool pointInPolygon(Point<T> a, std::vector<Point<T>> p) {
int n = p.size();
for (int i = 0; i < n; i++) {
if (pointOnSegment(a, Line(p[i], p[(i + 1) % n]))) {
return true;
}
}
int t = 0;
for (int i = 0; i < n; i++) {
auto u = p[i];
auto v = p[(i + 1) % n];
if (u.x < a.x && v.x >= a.x && pointOnLineLeft(a, Line(v, u))) {
t ^= 1;
}
if (u.x >= a.x && v.x < a.x && pointOnLineLeft(a, Line(u, v))) {
t ^= 1;
}
}
return t == 1;
}
// 0 : not intersect
// 1 : strictly intersect
// 2 : overlap
// 3 : intersect at endpoint
template<class T>
std::tuple<int, Point<T>, Point<T>> segmentIntersection(Line<T> l1, Line<T> l2) {
if (std::max(l1.a.x, l1.b.x) < std::min(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.x, l1.b.x) > std::max(l2.a.x, l2.b.x)) {
return {0, Point<T>(), Point<T>()};
}
if (std::max(l1.a.y, l1.b.y) < std::min(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (std::min(l1.a.y, l1.b.y) > std::max(l2.a.y, l2.b.y)) {
return {0, Point<T>(), Point<T>()};
}
if (cross(l1.b - l1.a, l2.b - l2.a) == 0) {
if (cross(l1.b - l1.a, l2.a - l1.a) != 0) {
return {0, Point<T>(), Point<T>()};
} else {
auto maxx1 = std::max(l1.a.x, l1.b.x);
auto minx1 = std::min(l1.a.x, l1.b.x);
auto maxy1 = std::max(l1.a.y, l1.b.y);
auto miny1 = std::min(l1.a.y, l1.b.y);
auto maxx2 = std::max(l2.a.x, l2.b.x);
auto minx2 = std::min(l2.a.x, l2.b.x);
auto maxy2 = std::max(l2.a.y, l2.b.y);
auto miny2 = std::min(l2.a.y, l2.b.y);
Point<T> p1(std::max(minx1, minx2), std::max(miny1, miny2));
Point<T> p2(std::min(maxx1, maxx2), std::min(maxy1, maxy2));
if (!pointOnSegment(p1, l1)) {
std::swap(p1.y, p2.y);
}
if (p1 == p2) {
return {3, p1, p2};
} else {
return {2, p1, p2};
}
}
}
auto cp1 = cross(l2.a - l1.a, l2.b - l1.a);
auto cp2 = cross(l2.a - l1.b, l2.b - l1.b);
auto cp3 = cross(l1.a - l2.a, l1.b - l2.a);
auto cp4 = cross(l1.a - l2.b, l1.b - l2.b);
if ((cp1 > 0 && cp2 > 0) || (cp1 < 0 && cp2 < 0) || (cp3 > 0 && cp4 > 0) || (cp3 < 0 && cp4 < 0)) {
return {0, Point<T>(), Point<T>()};
}
Point p = lineIntersection(l1, l2);
if (cp1 != 0 && cp2 != 0 && cp3 != 0 && cp4 != 0) {
return {1, p, p};
} else {
return {3, p, p};
}
}
template<class T>
bool segmentInPolygon(Line<T> l, std::vector<Point<T>> p) {
int n = p.size();
if (!pointInPolygon(l.a, p)) {
return false;
}
if (!pointInPolygon(l.b, p)) {
return false;
}
for (int i = 0; i < n; i++) {
auto u = p[i];
auto v = p[(i + 1) % n];
auto w = p[(i + 2) % n];
auto [t, p1, p2] = segmentIntersection(l, Line(u, v));
if (t == 1) {
return false;
}
if (t == 0) {
continue;
}
if (t == 2) {
if (pointOnSegment(v, l) && v != l.a && v != l.b) {
if (cross(v - u, w - v) > 0) {
return false;
}
}
} else {
if (p1 != u && p1 != v) {
if (pointOnLineLeft(l.a, Line(v, u))
|| pointOnLineLeft(l.b, Line(v, u))) {
return false;
}
} else if (p1 == v) {
if (l.a == v) {
if (pointOnLineLeft(u, l)) {
if (pointOnLineLeft(w, l)
&& pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, l)
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
} else if (l.b == v) {
if (pointOnLineLeft(u, Line(l.b, l.a))) {
if (pointOnLineLeft(w, Line(l.b, l.a))
&& pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, Line(l.b, l.a))
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
} else {
if (pointOnLineLeft(u, l)) {
if (pointOnLineLeft(w, Line(l.b, l.a))
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
} else {
if (pointOnLineLeft(w, l)
|| pointOnLineLeft(w, Line(u, v))) {
return false;
}
}
}
}
}
}
return true;
}
template<class T>
std::vector<Point<T>> hp(std::vector<Line<T>> lines) {
std::sort(lines.begin(), lines.end(), [&](auto l1, auto l2) {
auto d1 = l1.b - l1.a;
auto d2 = l2.b - l2.a;
if (sgn(d1) != sgn(d2)) {
return sgn(d1) == 1;
}
return cross(d1, d2) > 0;
});
std::deque<Line<T>> ls;
std::deque<Point<T>> ps;
for (auto l : lines) {
if (ls.empty()) {
ls.push_back(l);
continue;
}
while (!ps.empty() && !pointOnLineLeft(ps.back(), l)) {
ps.pop_back();
ls.pop_back();
}
while (!ps.empty() && !pointOnLineLeft(ps[0], l)) {
ps.pop_front();
ls.pop_front();
}
if (cross(l.b - l.a, ls.back().b - ls.back().a) == 0) {
if (dot(l.b - l.a, ls.back().b - ls.back().a) > 0) {
if (!pointOnLineLeft(ls.back().a, l)) {
assert(ls.size() == 1);
ls[0] = l;
}
continue;
}
return {};
}
ps.push_back(lineIntersection(ls.back(), l));
ls.push_back(l);
}
while (!ps.empty() && !pointOnLineLeft(ps.back(), ls[0])) {
ps.pop_back();
ls.pop_back();
}
if (ls.size() <= 2) {
return {};
}
ps.push_back(lineIntersection(ls[0], ls.back()));
return std::vector(ps.begin(), ps.end());
}
template<typename T>
std::vector<Point<T>> getHull(std::vector<Point<T>> p) {
std::vector<Point<T>> h, l;
std::sort(p.begin(), p.end(), [&](auto a, auto b) {
if (a.x != b.x) {
return a.x < b.x;
} else {
return a.y < b.y;
}
});
p.erase(std::unique(p.begin(), p.end()), p.end());
if (p.size() <= 1) {
return p;
}
for (auto a : p) {
while (h.size() > 1 && cross(a - h.back(), a - h[h.size() - 2]) <= 0) {
h.pop_back();
}
while (l.size() > 1 && cross(a - l.back(), a - l[l.size() - 2]) >= 0) {
l.pop_back();
}
l.push_back(a);
h.push_back(a);
}
l.pop_back();
std::reverse(h.begin(), h.end());
h.pop_back();
l.insert(l.end(), h.begin(), h.end());
return l;
}
template<typename T>
i64 r(std::vector<Point<T>> h) {
if(h.size() <= 1) return 0;
if(h.size() == 2) {
return square(h[0] - h[1]);
}
auto area = [&](Point<T> &a, Point<T> &b, Point<T> &c) -> i64 {
return cross(c - a, c - b);
};
T ans = 0;
for(int i = 0, j = 1, n = h.size(); i < n; i ++) {
ans = std::max({ans, square(h[j] - h[i]), square(h[j] - h[(i + 1) % n])});
while(area(h[(j + 1) % n], h[i], h[(i + 1) % n]) >= area(h[j], h[i], h[(i + 1) % n])) {
j = (j + 1) % n;
ans = std::max({ans, square(h[j] - h[i]), square(h[j] - h[(i + 1) % n] )});
}
}
return ans;
}
void solve() {
int n;
std::cin >> n;
std::vector<long double> dp(n);
std::vector<Point<i64>> h(n);
for(int i = 0; i < n; i ++ ) {
std::cin >> h[i];
for(int j = 0; j < i; j ++ ) {
dp[i] = std::max(dp[i], (j ? dp[j - 1] : 0) + length(h[i] - h[j]));
}
}
std::cout << std::fixed << std::setprecision(8) << dp[n - 1] << '\n';
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int T = 1;
// std::cin >> T;
while(T -- ) {
solve();
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3832kb
input:
7 1 0 0 1 0 0 1 1 1 2 3 2 3 3
output:
5.65685425
result:
ok found '5.6568543', expected '5.6568542', error '0.0000000'
Test #2:
score: -100
Wrong Answer
time: 55ms
memory: 3884kb
input:
4741 583042625 -288151442 901234470 -999760464 -974135773 -819820344 562644007 892707743 -120734580 -288167839 -14369253 88358276 -150949453 -39424771 -947214734 -826830020 578141361 443534304 -783950948 394211236 861595911 -751206580 570425640 624990919 484450011 -470115909 -417437663 22205205 -278...
output:
2771137091259.80031872
result:
wrong answer 1st numbers differ - expected: '2798587991989.8847656', found: '2771137091259.8002930', error = '0.0098088'