QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#713128 | #8337. Counter Reset Problem | maspy | AC ✓ | 239ms | 4132kb | C++23 | 21.2kb | 2024-11-05 18:12:56 | 2024-11-05 18:12:56 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 5 "main.cpp"
using mint = modint<1'000'000'009>;
mint F(string S, bool strict) {
vc<int> A = s_to_vi(S, '0');
ll N = len(A);
/*
0000 もコスト 10 として計算することにする
増大列の末尾の集合を dp key にする
1文字目がなんだったかももつ
*/
mint ANS = 0;
vv(int, nxt, 1 << 10, 10);
FOR(s, 1, 1 << 10) {
FOR(x, 10) {
if (x == 0) {
nxt[s][x] = s;
continue;
}
vc<int> A;
FOR(i, 10) if (s >> i & 1) A.eb(i);
int k = UB(A, x);
if (k == 0) {
nxt[s][x] = s | 1 << x;
} else {
nxt[s][x] = s ^ (1 << x) ^ (1 << A[k - 1]);
}
}
}
// cost = 10 * popcnt(s) - a
// (cnt, a_sum)
vv(mint, dpc, 2, 1 << 10);
vv(mint, dps, 2, 1 << 10);
FOR(a, 10) {
if (a < A[0]) dpc[0][1 << a] += 1, dps[0][1 << a] += a;
if (a == A[0]) dpc[1][1 << a] += 1, dps[1][1 << a] += a;
}
FOR(i, 1, N) {
vv(mint, newdpc, 2, 1 << 10);
vv(mint, newdps, 2, 1 << 10);
FOR(s, 1 << 10) {
FOR(x, 10) {
int t = nxt[s][x];
if (x < A[i]) {
newdpc[0][t] += dpc[0][s] + dpc[1][s];
newdps[0][t] += dps[0][s] + dps[1][s];
}
elif (x == A[i]) {
newdpc[0][t] += dpc[0][s];
newdps[0][t] += dps[0][s];
newdpc[1][t] += dpc[1][s];
newdps[1][t] += dps[1][s];
}
else {
newdpc[0][t] += dpc[0][s];
newdps[0][t] += dps[0][s];
}
}
}
swap(dpc, newdpc);
swap(dps, newdps);
}
FOR(s, 1 << 10) {
mint cnt = 0, sm = 0;
if (strict) {
cnt = dpc[0][s];
sm = dps[0][s];
} else {
cnt = dpc[0][s] + dpc[1][s];
sm = dps[0][s] + dps[1][s];
}
ANS += cnt * popcnt(s) * 10;
ANS -= sm;
// ll cost = 0;
// cost += 10 - a;
// cost += 10 * (popcnt(s) - 1);
// ANS += ans * cost;
}
return ANS;
}
void solve() {
LL(N);
STR(A, B);
mint ANS = 0;
ANS += F(B, 0);
ANS -= F(A, 1);
if (count(all(A), '0') == N) { ANS -= 10; }
print(ANS);
}
signed main() { solve(); }
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 4028kb
input:
2 19 23
output:
51
result:
ok 1 number(s): "51"
Test #2:
score: 0
Accepted
time: 2ms
memory: 3840kb
input:
6 100084 518118
output:
9159739
result:
ok 1 number(s): "9159739"
Test #3:
score: 0
Accepted
time: 3ms
memory: 3776kb
input:
12 040139021316 234700825190
output:
771011551
result:
ok 1 number(s): "771011551"
Test #4:
score: 0
Accepted
time: 2ms
memory: 3748kb
input:
1 5 6
output:
9
result:
ok 1 number(s): "9"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3812kb
input:
2 06 72
output:
609
result:
ok 1 number(s): "609"
Test #6:
score: 0
Accepted
time: 2ms
memory: 3852kb
input:
3 418 639
output:
2912
result:
ok 1 number(s): "2912"
Test #7:
score: 0
Accepted
time: 235ms
memory: 3924kb
input:
5000 0517031462295902016787205636287842713710486158285091634061538907131690102542613263904109051429895599547551249682345434244517372300211330243052548402051817254239088411128320032011447373157210750522722463984933692575118884942425236057310901139962840332684448050855646476051878413350560455871387882...
output:
107583434
result:
ok 1 number(s): "107583434"
Test #8:
score: 0
Accepted
time: 234ms
memory: 3912kb
input:
5000 2839631722409885676641854449409094340492285620998199901290315528351589154393629439187822315178094894928108915180727622985054953310653613329475433266861767377091508110388139487587162480394472451041742086595826537286229012805321959193382957731290351060584443229684181235109638118508206073343246746...
output:
675394398
result:
ok 1 number(s): "675394398"
Test #9:
score: 0
Accepted
time: 230ms
memory: 4108kb
input:
5000 0121086815228520611727091239718315691985426539178955693257347642954702438161323478758508490896602335048895013843711247876462745921412007803120100676220049634783076688779134708737789972863426435630047856085762842025741483042162463573248808646044510524282002015852558702184741741663627502716091539...
output:
578074633
result:
ok 1 number(s): "578074633"
Test #10:
score: 0
Accepted
time: 236ms
memory: 4088kb
input:
5000 4009315923866078525437170431271052539467314353326632440452295409898108927334934001515186676883568587509019024813648111170281871732854866326020722523420074725860024843129825137935119924032162976610499681775742229100481059217175250566980703955103400572138763397380102014106688956905053311588400020...
output:
819323161
result:
ok 1 number(s): "819323161"
Test #11:
score: 0
Accepted
time: 220ms
memory: 3760kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
603082563
result:
ok 1 number(s): "603082563"
Test #12:
score: 0
Accepted
time: 233ms
memory: 3884kb
input:
5000 0000000000633885819366504765094216298281960115914830941309836432136467240201372806102560453534308348622092992247290436462357300397071633074308793521958159789664211849487860185596546426031984309106487856333298764102131430876495841906089018423483214628974388565112953850655936525351241150423557902...
output:
932985830
result:
ok 1 number(s): "932985830"
Test #13:
score: 0
Accepted
time: 239ms
memory: 3888kb
input:
5000 0000000000650071814576152799371217256711135670967833166238159122753757108206475870392502604983652311016561019624401935292136522985447486826468820130245419622704571928465636054879957833368768017917014412258366637135806195430779375102341403097313114652657311053858679927415807978179707936045164697...
output:
272575829
result:
ok 1 number(s): "272575829"
Test #14:
score: 0
Accepted
time: 230ms
memory: 3856kb
input:
5000 0000000000657328094229913746099323221146491408592219130181502886161406660277702363829799840322984053200487383170118175993742015582187072728949691015559424378545103435137870775283813213496909942045139231518000704584636857968337740896332218427286839853901635635205631771246231118877718651555449476...
output:
794251626
result:
ok 1 number(s): "794251626"
Test #15:
score: 0
Accepted
time: 227ms
memory: 3824kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
249826051
result:
ok 1 number(s): "249826051"
Test #16:
score: 0
Accepted
time: 227ms
memory: 3892kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
877173017
result:
ok 1 number(s): "877173017"
Test #17:
score: 0
Accepted
time: 229ms
memory: 3688kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
151485979
result:
ok 1 number(s): "151485979"
Test #18:
score: 0
Accepted
time: 234ms
memory: 3756kb
input:
5000 0159014801946206696258203734914898037641394210297261730549338421564727821732889635369991666567782236274462438080517568850617352494745082823560909208313152733628396054053172422625874823061159544738915513215515633519036492102915591743629184750409504215140627903979481678277623315334259446755105828...
output:
721368738
result:
ok 1 number(s): "721368738"
Test #19:
score: 0
Accepted
time: 234ms
memory: 4048kb
input:
5000 1593096611929089320399735515670839445317319641521540547482273258869976707444342997517499850977225584459583734048472878376916290891193430156881347098295345589049871574695262843296709640049484336491756355117553445542978365925369583583406406734326950373574468989639441003537832172772375589737899071...
output:
938487418
result:
ok 1 number(s): "938487418"
Test #20:
score: 0
Accepted
time: 235ms
memory: 3928kb
input:
5000 1942754790423610065924881906928119381391132828624720869957031069051460107457618922368312221824960963868132141390226651557497490792608519699575355021753486816233381998899114193162905677398416103685843594379329937984889028183716216739319144146889113025558315492727143533792499692123674201374872204...
output:
723492844
result:
ok 1 number(s): "723492844"
Test #21:
score: 0
Accepted
time: 236ms
memory: 4116kb
input:
5000 4062002096644487673020263989686288898129263292181828632789920013217757414472684149988936679623592326524449425327527672207934691459025745820923996124060064518639311904886395009369861933306193619424323629802988069193226260879633708828283152348279888974862721493316338548452978605219663779103239012...
output:
238281829
result:
ok 1 number(s): "238281829"
Test #22:
score: 0
Accepted
time: 235ms
memory: 3908kb
input:
5000 6316405933251299737337372498948127698855361795106851122342961878511099460284477800021689398773624710796531710111934536692264758409336968822534138067510480682327132829787521086380502223411574189720853737018253702539000736954530096098855210480774721647243160303878286632142888618049567476390480811...
output:
438115612
result:
ok 1 number(s): "438115612"
Test #23:
score: 0
Accepted
time: 234ms
memory: 4120kb
input:
5000 4312995075485686062543180629030314065218422802018901116305311949720089333627550862972827086943311274559763137206551659057830635552994046725440486537460417228963181395186626882241528751346159385275967489215558848690842325538312571185487608780842174973345018125820224444022865526286898846914681241...
output:
414266160
result:
ok 1 number(s): "414266160"
Test #24:
score: 0
Accepted
time: 233ms
memory: 3848kb
input:
5000 0258086533802944384387156598490812537122764239806464778492912263251810255189880663895709905649979907456754907239502806015536719760934923039556119131886838490466915234652947639266720467416389230731315037158937990393477937813832384167299260206768010113827843370432177823204051802021354476856735105...
output:
64847676
result:
ok 1 number(s): "64847676"
Test #25:
score: 0
Accepted
time: 235ms
memory: 3888kb
input:
5000 1060908140283541013245888192600010631685552708456164292614908505986842197764899377183662618610397275316175988006855369063828738809624059980852978342235894957407016210764697356445323759567892038560642666695593294909378068235791186540212051512547793737326942353251922108593809646186717444069399194...
output:
46089973
result:
ok 1 number(s): "46089973"
Test #26:
score: 0
Accepted
time: 230ms
memory: 3892kb
input:
5000 4167413337383512335342446844301295061283297832828337586399036812965628809584309280240335156549007875265018403232860390865650403559828858521226576098324688739416592074500021123122165578438715383733724065265859724840752630774162037584065233385787338015652858265386847420952773768786522984341856441...
output:
289963358
result:
ok 1 number(s): "289963358"
Test #27:
score: 0
Accepted
time: 233ms
memory: 3792kb
input:
5000 0016333155368124738088870770938980478519511839121409548927061239607054420424955716374905253395433974120004555646757520979538059659364833035441642423982778149708821441373452828856302141786564332166685062999047362082796733736904461408000518679191248454746816423311171496595881384512371985551985957...
output:
831498184
result:
ok 1 number(s): "831498184"
Test #28:
score: 0
Accepted
time: 230ms
memory: 4108kb
input:
5000 5092536296551794251043181638143747695055047667638655983429584258891712588224325674545229512946356577078967350285969472283180319383912962093190696463627527554628698850690973966211757510848419627816389188773320206947068778989020619318534488026535209398188789706361479060680484488911824233166170381...
output:
232548867
result:
ok 1 number(s): "232548867"
Test #29:
score: 0
Accepted
time: 236ms
memory: 3836kb
input:
5000 4250650491835895211380154911374118880219475610640757916147240362500104880620808530762344123980888292339437259581375290967595195746830677913147601662442399330928582487119875486342332667822985842301686413861142987548286348240942361774457164440066458920375413112071161055538460779044102959044496383...
output:
600488208
result:
ok 1 number(s): "600488208"
Test #30:
score: 0
Accepted
time: 236ms
memory: 3924kb
input:
5000 0000000000689078792067237718947428136594821842520489332698476953096081050443004774491088068653978931122890246667731895978262338006130108971352213349525758787905783267776002539885854055677272999660672296183028350453530189660455899343828445282255728924058584245940525190415132437297972695822279109...
output:
887505503
result:
ok 1 number(s): "887505503"
Test #31:
score: 0
Accepted
time: 234ms
memory: 3832kb
input:
5000 0000000000022121271882232360313107852566602611539514301356520582779830156937109065371076190844344608965131323524013303620896649114825312828542093066291828737963114945513196080146852787896344285823817341460491358653892467153045088134419113464433102015939811049514570760600972457269976090211961884...
output:
805027211
result:
ok 1 number(s): "805027211"
Test #32:
score: 0
Accepted
time: 236ms
memory: 4132kb
input:
5000 0000000000655258143985523409468362333040390212372889201638954055429475496420475344646752673292169310979974004259018721019774943143436225056989315666021154606929955509691052479829612484143399029185137961961904224760687081073181164608976833701710469728964824198019477823573078500411122321352408143...
output:
817305775
result:
ok 1 number(s): "817305775"
Test #33:
score: 0
Accepted
time: 229ms
memory: 3824kb
input:
5000 0000000000977853043576694047225399227210086922493669342733496307897953500774477296874716114502271719675269139177397229134428651178783123755665865371468690966481661122800434360623721854165798451817486468010819158274648686004500174373687929590147693675019891633373560050286228396315148221630242509...
output:
121593917
result:
ok 1 number(s): "121593917"
Test #34:
score: 0
Accepted
time: 233ms
memory: 3824kb
input:
5000 0000000000626847933851084471445813197397273635421637799221686455948052808565622535398102619895781412131685881963406264318131334291574165160956974488702833999982128858907022551925464777356511604362143099588141349054262136650241983023241186850500635027127232298038791110103217925320540465429578079...
output:
859770412
result:
ok 1 number(s): "859770412"
Test #35:
score: 0
Accepted
time: 233ms
memory: 3824kb
input:
5000 0000000000304243401410637355744802808733143685926175829233812528213453479871131108446674596961561046013094838367098551485599110034561978793633844518410906928604462778756766355621615924883101772853369939655287209121141140220603092065096713814992898390786602561069584785944502973388918962251742088...
output:
434661827
result:
ok 1 number(s): "434661827"
Test #36:
score: 0
Accepted
time: 232ms
memory: 4084kb
input:
5000 0000000000610523727147227044245934257508656780055358425742794275244952517850507397695762053339751873109506189007606141604459542156822164518307407582575075315832629466662597041565531419208169767059612454647764252183783064923890418860535482770645486496991346322389178352880274131087767972303098836...
output:
644040569
result:
ok 1 number(s): "644040569"
Test #37:
score: 0
Accepted
time: 233ms
memory: 3832kb
input:
5000 0000000000610091852181247077023000832216456399222387763619927598717508681275035226167283412004673572980957980402717453893826112768338773616062330558592109431953330116618467278798291497747305121371714461244238254762216799625177097143463130298124123226787267816764724839697760759349912767621877855...
output:
83534609
result:
ok 1 number(s): "83534609"
Test #38:
score: 0
Accepted
time: 233ms
memory: 4048kb
input:
5000 0000000000242616738203875233236973861419518431941561736955375287532653293772072421845606880661287146368249482401443956018202758259320445109639150994010196038940287579570474599000817155017574393956188924602724346439261731907670111733479014027966309087906395335929715951402141727143437701610426871...
output:
160784993
result:
ok 1 number(s): "160784993"
Test #39:
score: 0
Accepted
time: 2ms
memory: 3980kb
input:
1 0 0
output:
0
result:
ok 1 number(s): "0"
Test #40:
score: 0
Accepted
time: 2ms
memory: 4028kb
input:
2 00 00
output:
0
result:
ok 1 number(s): "0"
Test #41:
score: 0
Accepted
time: 2ms
memory: 3740kb
input:
3 000 000
output:
0
result:
ok 1 number(s): "0"
Test #42:
score: 0
Accepted
time: 2ms
memory: 3612kb
input:
4 0000 0000
output:
0
result:
ok 1 number(s): "0"
Test #43:
score: 0
Accepted
time: 207ms
memory: 3800kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
0
result:
ok 1 number(s): "0"
Test #44:
score: 0
Accepted
time: 228ms
memory: 4120kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
520894423
result:
ok 1 number(s): "520894423"
Test #45:
score: 0
Accepted
time: 227ms
memory: 4120kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
53974188
result:
ok 1 number(s): "53974188"
Test #46:
score: 0
Accepted
time: 229ms
memory: 3860kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
961014394
result:
ok 1 number(s): "961014394"
Test #47:
score: 0
Accepted
time: 229ms
memory: 3756kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
388131615
result:
ok 1 number(s): "388131615"
Test #48:
score: 0
Accepted
time: 228ms
memory: 4084kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
710918164
result:
ok 1 number(s): "710918164"
Test #49:
score: 0
Accepted
time: 229ms
memory: 3832kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
828554030
result:
ok 1 number(s): "828554030"
Test #50:
score: 0
Accepted
time: 225ms
memory: 3760kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
547595944
result:
ok 1 number(s): "547595944"
Test #51:
score: 0
Accepted
time: 230ms
memory: 3832kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
515152604
result:
ok 1 number(s): "515152604"
Test #52:
score: 0
Accepted
time: 226ms
memory: 4084kb
input:
5000 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...
output:
601070920
result:
ok 1 number(s): "601070920"
Extra Test:
score: 0
Extra Test Passed