QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#712612 | #8330. Count off 3 | maspy | AC ✓ | 615ms | 37592kb | C++23 | 22.4kb | 2024-11-05 16:22:41 | 2024-11-05 16:22:41 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 5 "main.cpp"
/*
6n 桁自由なときの...
偶関数、奇関数で持つ
1,2,3 をだいにゅうした値 -> 数え
*/
using mint = modint107;
const int LIM = 10000;
mint dp0[LIM + 1][7][7][7];
mint dp1[LIM + 1][7][7][7];
mint ALL[LIM + 1];
mint X[LIM + 1][7];
mint Y[LIM + 1][7];
mint Z[LIM + 1][7];
mint XY[LIM + 1][7][7];
mint XZ[LIM + 1][7][7];
mint YZ[LIM + 1][7][7];
u8 pw[LIM + 1][7];
void init() {
dp0[0][0][0][0] = 1;
dp1[0][0][0][0] = 1;
FOR(x, 7) pw[0][x] = 1;
FOR(n, LIM) {
FOR(x, 7) { pw[n + 1][x] = pw[n][x] * x % 7; }
}
FOR(n, LIM) {
FOR(a, 7) FOR(b, 7) FOR(c, 7) {
dp0[n + 1][a][b][c] = dp0[n][a][b][c];
dp1[n + 1][a][b][c] = dp1[n][a][b][c];
}
if (n % 2 == 0) {
FOR(a, 7) FOR(b, 7) FOR(c, 7) {
int aa = (a + pw[n][1]) % 7;
int bb = (b + pw[n][2]) % 7;
int cc = (c + pw[n][3]) % 7;
dp0[n + 1][aa][bb][cc] += dp0[n][a][b][c];
}
}
if (n % 2 == 1) {
FOR(a, 7) FOR(b, 7) FOR(c, 7) {
int aa = (a + pw[n][1]) % 7;
int bb = (b + pw[n][2]) % 7;
int cc = (c + pw[n][3]) % 7;
dp1[n + 1][aa][bb][cc] += dp1[n][a][b][c];
}
}
}
FOR(n, LIM + 1) {
FOR(a, 7) FOR(b, 7) FOR(c, 7) {
mint x = dp1[n][a][b][c];
ALL[n] += x;
X[n][a] += x;
Y[n][b] += x;
Z[n][c] += x;
XY[n][a][b] += x;
XZ[n][a][c] += x;
YZ[n][b][c] += x;
}
}
}
mint solve(string S) {
// S 以下
// f(1),...,f(6) は 0 ではない
// f(0) の条件はありません
int MOD[100];
FOR(x, 100) MOD[x] = x % 7;
array<int, 7> val{};
mint ANS = 0;
int A[2];
int B[2];
int C[2];
ll N = len(S);
FOR(i, N) {
// ここではじめて下回るとする
int n = N - 1 - i;
if (S[i] == '1') {
FOR(a, 7) FOR(b, 7) FOR(c, 7) {
// FOR(aa, 7) FOR(bb, 7) FOR(cc, 7) {
// if ((val[1] + a + aa) % 7 == 0) continue;
// if ((val[6] + a - aa) % 7 == 0) continue;
// if ((val[2] + b + bb) % 7 == 0) continue;
// if ((val[5] + b - bb) % 7 == 0) continue;
// if ((val[3] + c + cc) % 7 == 0) continue;
// if ((val[4] + c - cc) % 7 == 0) continue;
// ANS += dp0[n][a][b][c] * dp1[n][aa][bb][cc];
// }
A[0] = MOD[14 - val[1] - a], A[1] = MOD[val[6] + a];
B[0] = MOD[14 - val[2] - b], B[1] = MOD[val[5] + b];
C[0] = MOD[14 - val[3] - c], C[1] = MOD[val[4] + c];
int na = (A[0] == A[1] ? 1 : 2);
int nb = (B[0] == B[1] ? 1 : 2);
int nc = (C[0] == C[1] ? 1 : 2);
mint ans = ALL[n];
FOR(i, na) ans -= X[n][A[i]];
FOR(i, nb) ans -= Y[n][B[i]];
FOR(i, nc) ans -= Z[n][C[i]];
FOR(i, na) FOR(j, nb) ans += XY[n][A[i]][B[j]];
FOR(i, na) FOR(j, nc) ans += XZ[n][A[i]][C[j]];
FOR(i, nb) FOR(j, nc) ans += YZ[n][B[i]][C[j]];
FOR(i, na) FOR(j, nb) FOR(k, nc) ans -= dp1[n][A[i]][B[j]][C[k]];
ANS += dp0[n][a][b][c] * ans;
}
FOR(x, 7) { val[x] = (val[x] + pw[n][x]) % 7; }
}
}
bool ok = 1;
FOR(k, 1, 7) if (val[k] == 0) ok = 0;
if (ok) ANS += 1;
return ANS;
}
void solve() {
STR(S);
mint ANS = 0;
ANS += solve(S);
S.pop_back();
ANS -= solve(S);
print(ANS);
}
signed main() {
init();
INT(T);
FOR(T) solve();
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 22ms
memory: 37024kb
input:
5 1 1010 110101 1000111000 101101001000
output:
1 2 15 114 514
result:
ok 5 number(s): "1 2 15 114 514"
Test #2:
score: 0
Accepted
time: 33ms
memory: 37296kb
input:
10 1 11 1000 10111011 1000110100101001 11101110000001000011010011011000 110011000111110001101010101100100011010010101000011111001101011 11010111011101000010101111011111011011100001001101010011101011111111011011111101110110010011001101000001000111100010010111000010 10000000000000000000000000000000000...
output:
1 1 2 45 6591 814196699 193088128 849103726 497125329 363076920
result:
ok 10 numbers
Test #3:
score: 0
Accepted
time: 220ms
memory: 37192kb
input:
10 1 101 100101000 111111001111011001111100111 100001101010101000101110010111010010001101101110011111000001010001111100101010000 111001010100100100110011110111000111001001001001000100000011000110011000110101010010100000100101110101000011000011100010011001011000101110100111000110011011010111011111011...
output:
1 2 64 27062688 486363229 184013394 580592021 118930214 772664718 344619804
result:
ok 10 numbers
Test #4:
score: 0
Accepted
time: 320ms
memory: 37240kb
input:
10 1 1011 1101001010001110 1000010101110010000010010000000000001010111001001001110011001101 1001100101110111001000100100110111110001110010111011010101010111011101111101111100010000001100001001011100111100010110011010000010000000001100111011000001110011010000100000110101010011111100010111111100011011...
output:
1 3 10053 860833891 537931408 329471109 368911735 157523156 595487313 534701861
result:
ok 10 numbers
Test #5:
score: 0
Accepted
time: 396ms
memory: 37592kb
input:
10 1 11111 1010110010010000111001001 10011010100100001000110000111101101000111100001000000101010001100111111010001000101000000011100101000101100111100001001101100 11000100100010011101010101001011100010001100001010110011110101001101011000110001000111101010010000110111010001100100100111001000001000010...
output:
1 10 4692555 763463648 464152115 115362567 880780461 578723006 560068977 423846910
result:
ok 10 numbers
Test #6:
score: 0
Accepted
time: 436ms
memory: 37224kb
input:
10 1 101011 100100110100111100001101000101011100 1011011000011001101101010110000111011001001100110101111100110000100100101010000000110110010001110011101011000001011001000010001011101110110100110010111111000101101010110000101010101011001111100111011001101111011101 101000000111000010111000110000011000...
output:
1 13 955673880 266148454 368723690 496979115 190983211 772121423 932555320 843716403
result:
ok 10 numbers
Test #7:
score: 0
Accepted
time: 470ms
memory: 37272kb
input:
10 1 1101101 1100111111001000111100000010000111000000010101001 110111101101011000111101100110010011011100101110101111110011001111001101001000011001110011110101001110010110011110011001111010010101010011010011101101111010111000001110110111011011101000100001000001101110010111100110001110011101110111100...
output:
1 29 912933242 912560788 607401363 477602366 394403189 275067439 592568023 75193370
result:
ok 10 numbers
Test #8:
score: 0
Accepted
time: 483ms
memory: 37096kb
input:
10 1 10000010 100101110110100111100000100011111111010001100010100001100110001 111111000010011010111011111110000010101101011110100001101011110000001111001110001111110101000000010000001011000101101011010111011101111110101001000110011101010000111001011111100100010000010110110101010001110100111110110001...
output:
1 32 959140870 614330473 849221876 787816311 359958989 239371459 534701861 254356877
result:
ok 10 numbers
Test #9:
score: 0
Accepted
time: 522ms
memory: 37232kb
input:
10 1 111110011 111101001101011110100011110000100110011101010111111110100001111001101000100101101 11011010000110101011111110110011101010100100110001001111111011010000101111110001001011000011010101001000101110000100011011100101010110010101000101010111101100101110111100011011011000101101001001001100111...
output:
1 99 286317277 694681686 723919544 789291149 680541846 694957099 453387561 757810824
result:
ok 10 numbers
Test #10:
score: 0
Accepted
time: 540ms
memory: 37264kb
input:
10 1 1001001110 10110010111110100100111100111101101010111110111011001110000111101011011010110011110000000001110100 11000101011111110110100101100100100000010110001011100010101111111000000111000101100110111110101010111110010110111111110010110010001100000000111000101100010001110010001011111110101011111...
output:
1 120 987933828 449323095 435643580 557750562 122442298 758115947 388795572 87146822
result:
ok 10 numbers
Test #11:
score: 0
Accepted
time: 550ms
memory: 37164kb
input:
10 1 11010010100 100110110000100111011101001111000000000110111100011110111011110100001010101000000000100000101100100101110101011100111000 110111100000010010111000111011111100010100100111101001001101111010011011100100001010100010100011110111111100101011100111111011011000000111001111000101111010110111...
output:
1 325 391030697 323231960 401473132 822267612 841573845 283856764 804647498 76347459
result:
ok 10 numbers
Test #12:
score: 0
Accepted
time: 551ms
memory: 37288kb
input:
10 1 111111110011 100111010001010010111100011101110011110100101101010111001110101111000111010001111110000001000011010111010001001000011101100011100010010100010000 11001011101100010011111001010110110000110110011001011001000001001110010100100000000101100010001011010010001101000101110000111100100000001...
output:
1 704 677678115 593427859 667002509 574438492 664907465 979953874 8529137 613727900
result:
ok 10 numbers
Test #13:
score: 0
Accepted
time: 555ms
memory: 37292kb
input:
10 1 1100110101011 100111000010011100111101101100110010110000100011110101100100011001101011100011101101110111001101000001110010111001110011100101000111111000010101101100011000010100010101 1111010000010011010010011000010000000001000110111011101100111011100010110011100110011110011011110011110100011001...
output:
1 1146 832402516 402106502 689225542 416112434 991952024 938688647 880733772 630306115
result:
ok 10 numbers
Test #14:
score: 0
Accepted
time: 564ms
memory: 37220kb
input:
10 1 11000000000111 110010000100100011111101001100111010110111011101101011001001010110101111111101001000000100110011110101100111010110100100010100000100000011100010101011010001100001000111000101000011010110010100000 101001000110100011110100011001010101001010011111010111111001100111111100101111110111...
output:
1 2087 659256442 942088668 754989716 908871865 566839365 111034927 696022638 206335876
result:
ok 10 numbers
Test #15:
score: 0
Accepted
time: 573ms
memory: 37204kb
input:
10 1 111100001011110 101100010011110001000011110010011010011100110010111110100111111111100101100111010101001101111001111010111011011111000111000101101010001100111010100110110000111110100100101000001101111100000101101100010110101000011001110001101 11111110001100110111110110100010111010100010010010010...
output:
1 5612 120730460 903512843 440620378 736669452 35297346 414402862 87146822 461180872
result:
ok 10 numbers
Test #16:
score: 0
Accepted
time: 559ms
memory: 37536kb
input:
10 1 1011110111101110 11111011001101100000000011011111011000101001100010000000001010011110010000100000111100101011101111111111001000110011110000011001000111000010101100001001100111100100000010101101111100100100101110101100000000011101011100010111111010000101011000110010011000 11110011001110110000001...
output:
1 9074 47298040 806126372 607928251 829797230 861514498 6535505 135611721 148853296
result:
ok 10 numbers
Test #17:
score: 0
Accepted
time: 593ms
memory: 37524kb
input:
10 1 11101111010010001 1111011100010101011101000110010001011001010101000100111100010110101010010001100101001001011111101001101100110100100100101101011001100000101011000100001011101000101000110000110100100100001001000011000111000010100011001111111011010001110111101111010011100010110001010010000100001...
output:
1 25268 485539600 497476229 129697011 91489334 354698980 228961474 875061949 618786188
result:
ok 10 numbers
Test #18:
score: 0
Accepted
time: 595ms
memory: 37492kb
input:
10 1 101101011100110001 100111001100000111101000101110011011011011111101011110101111000010000101010001010110100101001001100010101100101001110110001101101100111111100001000100010010110101110010111101100110010000010001101011001110001001100111101100111010100100000000000010000100101001000110000111100100...
output:
1 38342 769759919 33866310 945890505 127750526 125262837 888967227 757810824 441419016
result:
ok 10 numbers
Test #19:
score: 0
Accepted
time: 595ms
memory: 37240kb
input:
10 1 1001100011010110111 11100110010001111111110100011111100100011011110000110100000111101100111110111010111010111001111111100111011000000101001111000010001100010001111001011000111111001111100100101101011001110011100000111011111110101000111011101101110101101101110101100000011000001001011011100001111...
output:
1 65218 438898572 348219276 776140964 704823526 170625715 198310775 477853700 897436999
result:
ok 10 numbers
Test #20:
score: 0
Accepted
time: 615ms
memory: 37536kb
input:
10 1 11010100111111001011 1000011001001001110110101001100001001101001001010010101010001110011001001000000000110001100110001110110111010100101011011001100101001110111001101101000111101100010110101100101110111101000101111010100110001011110111000110000110110111011101110010010011010001110101010110010000...
output:
1 183823 238142747 846693477 959968477 260267123 642987070 779134130 951392182 679687101
result:
ok 10 numbers
Extra Test:
score: 0
Extra Test Passed