QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#712612#8330. Count off 3maspyAC ✓615ms37592kbC++2322.4kb2024-11-05 16:22:412024-11-05 16:22:41

Judging History

你现在查看的是最新测评结果

  • [2024-11-05 16:22:41]
  • 评测
  • 测评结果:AC
  • 用时:615ms
  • 内存:37592kb
  • [2024-11-05 16:22:41]
  • 提交

answer

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 582313106};
    if (mod == 1012924417) return {21, 368093570};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 5 "main.cpp"

/*
6n 桁自由なときの...
偶関数、奇関数で持つ
1,2,3 をだいにゅうした値 -> 数え
*/

using mint = modint107;

const int LIM = 10000;

mint dp0[LIM + 1][7][7][7];
mint dp1[LIM + 1][7][7][7];
mint ALL[LIM + 1];
mint X[LIM + 1][7];
mint Y[LIM + 1][7];
mint Z[LIM + 1][7];
mint XY[LIM + 1][7][7];
mint XZ[LIM + 1][7][7];
mint YZ[LIM + 1][7][7];
u8 pw[LIM + 1][7];

void init() {
  dp0[0][0][0][0] = 1;
  dp1[0][0][0][0] = 1;

  FOR(x, 7) pw[0][x] = 1;
  FOR(n, LIM) {
    FOR(x, 7) { pw[n + 1][x] = pw[n][x] * x % 7; }
  }

  FOR(n, LIM) {
    FOR(a, 7) FOR(b, 7) FOR(c, 7) {
      dp0[n + 1][a][b][c] = dp0[n][a][b][c];
      dp1[n + 1][a][b][c] = dp1[n][a][b][c];
    }
    if (n % 2 == 0) {
      FOR(a, 7) FOR(b, 7) FOR(c, 7) {
        int aa = (a + pw[n][1]) % 7;
        int bb = (b + pw[n][2]) % 7;
        int cc = (c + pw[n][3]) % 7;
        dp0[n + 1][aa][bb][cc] += dp0[n][a][b][c];
      }
    }
    if (n % 2 == 1) {
      FOR(a, 7) FOR(b, 7) FOR(c, 7) {
        int aa = (a + pw[n][1]) % 7;
        int bb = (b + pw[n][2]) % 7;
        int cc = (c + pw[n][3]) % 7;
        dp1[n + 1][aa][bb][cc] += dp1[n][a][b][c];
      }
    }
  }

  FOR(n, LIM + 1) {
    FOR(a, 7) FOR(b, 7) FOR(c, 7) {
      mint x = dp1[n][a][b][c];
      ALL[n] += x;
      X[n][a] += x;
      Y[n][b] += x;
      Z[n][c] += x;
      XY[n][a][b] += x;
      XZ[n][a][c] += x;
      YZ[n][b][c] += x;
    }
  }
}

mint solve(string S) {
  // S 以下
  // f(1),...,f(6) は 0 ではない
  // f(0) の条件はありません

  int MOD[100];
  FOR(x, 100) MOD[x] = x % 7;

  array<int, 7> val{};
  mint ANS = 0;

  int A[2];
  int B[2];
  int C[2];
  ll N = len(S);
  FOR(i, N) {
    // ここではじめて下回るとする
    int n = N - 1 - i;
    if (S[i] == '1') {
      FOR(a, 7) FOR(b, 7) FOR(c, 7) {
        // FOR(aa, 7) FOR(bb, 7) FOR(cc, 7) {
        //   if ((val[1] + a + aa) % 7 == 0) continue;
        //   if ((val[6] + a - aa) % 7 == 0) continue;
        //   if ((val[2] + b + bb) % 7 == 0) continue;
        //   if ((val[5] + b - bb) % 7 == 0) continue;
        //   if ((val[3] + c + cc) % 7 == 0) continue;
        //   if ((val[4] + c - cc) % 7 == 0) continue;
        //   ANS += dp0[n][a][b][c] * dp1[n][aa][bb][cc];
        // }
        A[0] = MOD[14 - val[1] - a], A[1] = MOD[val[6] + a];
        B[0] = MOD[14 - val[2] - b], B[1] = MOD[val[5] + b];
        C[0] = MOD[14 - val[3] - c], C[1] = MOD[val[4] + c];
        int na = (A[0] == A[1] ? 1 : 2);
        int nb = (B[0] == B[1] ? 1 : 2);
        int nc = (C[0] == C[1] ? 1 : 2);
        mint ans = ALL[n];
        FOR(i, na) ans -= X[n][A[i]];
        FOR(i, nb) ans -= Y[n][B[i]];
        FOR(i, nc) ans -= Z[n][C[i]];
        FOR(i, na) FOR(j, nb) ans += XY[n][A[i]][B[j]];
        FOR(i, na) FOR(j, nc) ans += XZ[n][A[i]][C[j]];
        FOR(i, nb) FOR(j, nc) ans += YZ[n][B[i]][C[j]];
        FOR(i, na) FOR(j, nb) FOR(k, nc) ans -= dp1[n][A[i]][B[j]][C[k]];
        ANS += dp0[n][a][b][c] * ans;
      }
      FOR(x, 7) { val[x] = (val[x] + pw[n][x]) % 7; }
    }
  }

  bool ok = 1;
  FOR(k, 1, 7) if (val[k] == 0) ok = 0;
  if (ok) ANS += 1;
  return ANS;
}

void solve() {
  STR(S);
  mint ANS = 0;
  ANS += solve(S);
  S.pop_back();
  ANS -= solve(S);
  print(ANS);
}

signed main() {
  init();
  INT(T);
  FOR(T) solve();
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 22ms
memory: 37024kb

input:

5
1
1010
110101
1000111000
101101001000

output:

1
2
15
114
514

result:

ok 5 number(s): "1 2 15 114 514"

Test #2:

score: 0
Accepted
time: 33ms
memory: 37296kb

input:

10
1
11
1000
10111011
1000110100101001
11101110000001000011010011011000
110011000111110001101010101100100011010010101000011111001101011
11010111011101000010101111011111011011100001001101010011101011111111011011111101110110010011001101000001000111100010010111000010
10000000000000000000000000000000000...

output:

1
1
2
45
6591
814196699
193088128
849103726
497125329
363076920

result:

ok 10 numbers

Test #3:

score: 0
Accepted
time: 220ms
memory: 37192kb

input:

10
1
101
100101000
111111001111011001111100111
100001101010101000101110010111010010001101101110011111000001010001111100101010000
111001010100100100110011110111000111001001001001000100000011000110011000110101010010100000100101110101000011000011100010011001011000101110100111000110011011010111011111011...

output:

1
2
64
27062688
486363229
184013394
580592021
118930214
772664718
344619804

result:

ok 10 numbers

Test #4:

score: 0
Accepted
time: 320ms
memory: 37240kb

input:

10
1
1011
1101001010001110
1000010101110010000010010000000000001010111001001001110011001101
1001100101110111001000100100110111110001110010111011010101010111011101111101111100010000001100001001011100111100010110011010000010000000001100111011000001110011010000100000110101010011111100010111111100011011...

output:

1
3
10053
860833891
537931408
329471109
368911735
157523156
595487313
534701861

result:

ok 10 numbers

Test #5:

score: 0
Accepted
time: 396ms
memory: 37592kb

input:

10
1
11111
1010110010010000111001001
10011010100100001000110000111101101000111100001000000101010001100111111010001000101000000011100101000101100111100001001101100
11000100100010011101010101001011100010001100001010110011110101001101011000110001000111101010010000110111010001100100100111001000001000010...

output:

1
10
4692555
763463648
464152115
115362567
880780461
578723006
560068977
423846910

result:

ok 10 numbers

Test #6:

score: 0
Accepted
time: 436ms
memory: 37224kb

input:

10
1
101011
100100110100111100001101000101011100
1011011000011001101101010110000111011001001100110101111100110000100100101010000000110110010001110011101011000001011001000010001011101110110100110010111111000101101010110000101010101011001111100111011001101111011101
101000000111000010111000110000011000...

output:

1
13
955673880
266148454
368723690
496979115
190983211
772121423
932555320
843716403

result:

ok 10 numbers

Test #7:

score: 0
Accepted
time: 470ms
memory: 37272kb

input:

10
1
1101101
1100111111001000111100000010000111000000010101001
110111101101011000111101100110010011011100101110101111110011001111001101001000011001110011110101001110010110011110011001111010010101010011010011101101111010111000001110110111011011101000100001000001101110010111100110001110011101110111100...

output:

1
29
912933242
912560788
607401363
477602366
394403189
275067439
592568023
75193370

result:

ok 10 numbers

Test #8:

score: 0
Accepted
time: 483ms
memory: 37096kb

input:

10
1
10000010
100101110110100111100000100011111111010001100010100001100110001
111111000010011010111011111110000010101101011110100001101011110000001111001110001111110101000000010000001011000101101011010111011101111110101001000110011101010000111001011111100100010000010110110101010001110100111110110001...

output:

1
32
959140870
614330473
849221876
787816311
359958989
239371459
534701861
254356877

result:

ok 10 numbers

Test #9:

score: 0
Accepted
time: 522ms
memory: 37232kb

input:

10
1
111110011
111101001101011110100011110000100110011101010111111110100001111001101000100101101
11011010000110101011111110110011101010100100110001001111111011010000101111110001001011000011010101001000101110000100011011100101010110010101000101010111101100101110111100011011011000101101001001001100111...

output:

1
99
286317277
694681686
723919544
789291149
680541846
694957099
453387561
757810824

result:

ok 10 numbers

Test #10:

score: 0
Accepted
time: 540ms
memory: 37264kb

input:

10
1
1001001110
10110010111110100100111100111101101010111110111011001110000111101011011010110011110000000001110100
11000101011111110110100101100100100000010110001011100010101111111000000111000101100110111110101010111110010110111111110010110010001100000000111000101100010001110010001011111110101011111...

output:

1
120
987933828
449323095
435643580
557750562
122442298
758115947
388795572
87146822

result:

ok 10 numbers

Test #11:

score: 0
Accepted
time: 550ms
memory: 37164kb

input:

10
1
11010010100
100110110000100111011101001111000000000110111100011110111011110100001010101000000000100000101100100101110101011100111000
110111100000010010111000111011111100010100100111101001001101111010011011100100001010100010100011110111111100101011100111111011011000000111001111000101111010110111...

output:

1
325
391030697
323231960
401473132
822267612
841573845
283856764
804647498
76347459

result:

ok 10 numbers

Test #12:

score: 0
Accepted
time: 551ms
memory: 37288kb

input:

10
1
111111110011
100111010001010010111100011101110011110100101101010111001110101111000111010001111110000001000011010111010001001000011101100011100010010100010000
11001011101100010011111001010110110000110110011001011001000001001110010100100000000101100010001011010010001101000101110000111100100000001...

output:

1
704
677678115
593427859
667002509
574438492
664907465
979953874
8529137
613727900

result:

ok 10 numbers

Test #13:

score: 0
Accepted
time: 555ms
memory: 37292kb

input:

10
1
1100110101011
100111000010011100111101101100110010110000100011110101100100011001101011100011101101110111001101000001110010111001110011100101000111111000010101101100011000010100010101
1111010000010011010010011000010000000001000110111011101100111011100010110011100110011110011011110011110100011001...

output:

1
1146
832402516
402106502
689225542
416112434
991952024
938688647
880733772
630306115

result:

ok 10 numbers

Test #14:

score: 0
Accepted
time: 564ms
memory: 37220kb

input:

10
1
11000000000111
110010000100100011111101001100111010110111011101101011001001010110101111111101001000000100110011110101100111010110100100010100000100000011100010101011010001100001000111000101000011010110010100000
101001000110100011110100011001010101001010011111010111111001100111111100101111110111...

output:

1
2087
659256442
942088668
754989716
908871865
566839365
111034927
696022638
206335876

result:

ok 10 numbers

Test #15:

score: 0
Accepted
time: 573ms
memory: 37204kb

input:

10
1
111100001011110
101100010011110001000011110010011010011100110010111110100111111111100101100111010101001101111001111010111011011111000111000101101010001100111010100110110000111110100100101000001101111100000101101100010110101000011001110001101
11111110001100110111110110100010111010100010010010010...

output:

1
5612
120730460
903512843
440620378
736669452
35297346
414402862
87146822
461180872

result:

ok 10 numbers

Test #16:

score: 0
Accepted
time: 559ms
memory: 37536kb

input:

10
1
1011110111101110
11111011001101100000000011011111011000101001100010000000001010011110010000100000111100101011101111111111001000110011110000011001000111000010101100001001100111100100000010101101111100100100101110101100000000011101011100010111111010000101011000110010011000
11110011001110110000001...

output:

1
9074
47298040
806126372
607928251
829797230
861514498
6535505
135611721
148853296

result:

ok 10 numbers

Test #17:

score: 0
Accepted
time: 593ms
memory: 37524kb

input:

10
1
11101111010010001
1111011100010101011101000110010001011001010101000100111100010110101010010001100101001001011111101001101100110100100100101101011001100000101011000100001011101000101000110000110100100100001001000011000111000010100011001111111011010001110111101111010011100010110001010010000100001...

output:

1
25268
485539600
497476229
129697011
91489334
354698980
228961474
875061949
618786188

result:

ok 10 numbers

Test #18:

score: 0
Accepted
time: 595ms
memory: 37492kb

input:

10
1
101101011100110001
100111001100000111101000101110011011011011111101011110101111000010000101010001010110100101001001100010101100101001110110001101101100111111100001000100010010110101110010111101100110010000010001101011001110001001100111101100111010100100000000000010000100101001000110000111100100...

output:

1
38342
769759919
33866310
945890505
127750526
125262837
888967227
757810824
441419016

result:

ok 10 numbers

Test #19:

score: 0
Accepted
time: 595ms
memory: 37240kb

input:

10
1
1001100011010110111
11100110010001111111110100011111100100011011110000110100000111101100111110111010111010111001111111100111011000000101001111000010001100010001111001011000111111001111100100101101011001110011100000111011111110101000111011101101110101101101110101100000011000001001011011100001111...

output:

1
65218
438898572
348219276
776140964
704823526
170625715
198310775
477853700
897436999

result:

ok 10 numbers

Test #20:

score: 0
Accepted
time: 615ms
memory: 37536kb

input:

10
1
11010100111111001011
1000011001001001110110101001100001001101001001010010101010001110011001001000000000110001100110001110110111010100101011011001100101001110111001101101000111101100010110101100101110111101000101111010100110001011110111000110000110110111011101110010010011010001110101010110010000...

output:

1
183823
238142747
846693477
959968477
260267123
642987070
779134130
951392182
679687101

result:

ok 10 numbers

Extra Test:

score: 0
Extra Test Passed