QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#706050#9536. Athlete Welcome Ceremonyucup-team1134#AC ✓257ms447224kbC++2322.9kb2024-11-03 06:15:372024-11-03 06:15:38

Judging History

This is the latest submission verdict.

  • [2024-11-03 06:15:38]
  • Judged
  • Verdict: AC
  • Time: 257ms
  • Memory: 447224kb
  • [2024-11-03 06:15:37]
  • Submitted

answer

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define vi vector<int>
#define vl vector<ll>
#define vii vector<pair<int,int>>
#define vll vector<pair<ll,ll>>
#define vvi vector<vector<int>>
#define vvl vector<vector<ll>>
#define vvii vector<vector<pair<int,int>>>
#define vvll vector<vector<pair<ll,ll>>>
#define vst vector<string>
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mkunique(x) sort(all(x));(x).erase(unique(all(x)),(x).end())
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=305,INF=15<<26;

//modint+畳み込み+逆元テーブル

// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)

#include <algorithm>
#include <array>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder



#include <utility>

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;
    
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
    
    unsigned int umod() const { return _m; }
    
    unsigned int mul(unsigned int a, unsigned int b) const {
        
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
        (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    for (long long a : {2, 7, 61}) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
        
        
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;

template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;

template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
                           std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;
    
public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    
    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
    
    unsigned int val() const { return _v; }
    
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    
private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;
    
public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    
    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
    
    unsigned int val() const { return _v; }
    
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }
    
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    
private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {

namespace internal {

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);
    
    static bool first = true;
    static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i < cnt2 - 2; i++) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
    }
    for (int ph = 1; ph <= h; ph++) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint now = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p] * now;
                a[i + offset] = l + r;
                a[i + offset + p] = l - r;
            }
            now *= sum_e[bsf(~(unsigned int)(s))];
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);
    
    static bool first = true;
    static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i < cnt2 - 2; i++) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
    }
    
    for (int ph = h; ph >= 1; ph--) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint inow = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p];
                a[i + offset] = l + r;
                a[i + offset + p] =
                (unsigned long long)(mint::mod() + l.val() - r.val()) *
                inow.val();
            }
            inow *= sum_ie[bsf(~(unsigned int)(s))];
        }
    }
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    if (std::min(n, m) <= 60) {
        if (n < m) {
            std::swap(n, m);
            std::swap(a, b);
        }
        std::vector<mint> ans(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
        return ans;
    }
    int z = 1 << internal::ceil_pow2(n + m - 1);
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    
    using mint = static_modint<mod>;
    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(move(a2), move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    
    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
    
    static constexpr unsigned long long i1 =
    internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
    internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
    internal::inv_gcd(MOD1 * MOD2, MOD3).second;
    
    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);
    
    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        long long diff =
        c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }
    
    return c;
}

}  // namespace atcoder

using mint=atcoder::modint1000000007;

mint dp[MAX][MAX][MAX][3];

mint ans[MAX][MAX][MAX];

int main(){
    
    std::ifstream in("text.txt");
    std::cin.rdbuf(in.rdbuf());
    cin.tie(0);
    ios::sync_with_stdio(false);
    
    int N,Q;cin>>N>>Q;
    string S;cin>>S;
    if(S[0]=='a'||S[0]=='?'){
        dp[1][1][0][0]++;
    }
    if(S[0]=='b'||S[0]=='?'){
        dp[1][0][1][1]++;
    }
    if(S[0]=='c'||S[0]=='?'){
        dp[1][0][0][2]++;
    }
    
    for(int i=1;i<N;i++){
        for(int a=0;a<=i;a++){
            for(int b=0;a+b<=i;b++){
                int c=i-a-b;
                for(int la=0;la<3;la++){
                    if(dp[i][a][b][la]==0) continue;
                    mint X=dp[i][a][b][la];
                    //cout<<i<<" "<<a<<" "<<b<<" "<<c<<" "<<la<<" "<<X.val()<<endl;
                    
                    if(S[i]=='a'||S[i]=='?'){
                        if(la!=0){
                            dp[i+1][a+1][b][0]+=X;
                        }
                    }
                    if(S[i]=='b'||S[i]=='?'){
                        if(la!=1){
                            dp[i+1][a][b+1][1]+=X;
                        }
                    }
                    if(S[i]=='c'||S[i]=='?'){
                        if(la!=2){
                            dp[i+1][a][b][2]+=X;
                        }
                    }
                }
            }
        }
    }
    
    vi def(3);
    for(char c:S){
        if(c=='a') def[0]++;
        if(c=='b') def[1]++;
        if(c=='c') def[2]++;
    }
    
    for(int a=0;a<=N;a++){
        for(int b=0;b<=N;b++){
            for(int la=0;la<3;la++){
                int c=N-a-b;
                if(dp[N][a][b][la].val()){
                    ans[a-def[0]][b-def[1]][c-def[2]]+=dp[N][a][b][la];
                    //cout<<a<<" "<<b<<" "<<c<<" "<<la<<endl;
                }
            }
        }
    }
    
    for(int i=1;i<=N;i++) for(int j=0;j<=N;j++) for(int k=0;k<=N;k++) ans[i][j][k]+=ans[i-1][j][k];
    for(int i=0;i<=N;i++) for(int j=1;j<=N;j++) for(int k=0;k<=N;k++) ans[i][j][k]+=ans[i][j-1][k];
    for(int i=0;i<=N;i++) for(int j=0;j<=N;j++) for(int k=1;k<=N;k++) ans[i][j][k]+=ans[i][j][k-1];
    
    while(Q--){
        int x,y,z;cin>>x>>y>>z;
        chmin(x,N);
        chmin(y,N);
        chmin(z,N);
        
        cout<<ans[x][y][z].val()<<"\n";
    }
}



这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 23ms
memory: 447140kb

input:

6 3
a?b??c
2 2 2
1 1 1
1 0 2

output:

3
1
1

result:

ok 3 lines

Test #2:

score: 0
Accepted
time: 28ms
memory: 446984kb

input:

6 3
??????
2 2 2
2 3 3
3 3 3

output:

30
72
96

result:

ok 3 lines

Test #3:

score: 0
Accepted
time: 32ms
memory: 446976kb

input:

1 1
?
0 1 1

output:

2

result:

ok single line: '2'

Test #4:

score: 0
Accepted
time: 24ms
memory: 446916kb

input:

10 10
acab?cbaca
0 2 0
1 1 2
4 2 3
1 1 1
3 5 1
0 5 2
2 2 0
1 2 5
4 3 0
1 1 3

output:

0
1
1
1
1
0
1
1
1
1

result:

ok 10 lines

Test #5:

score: 0
Accepted
time: 16ms
memory: 446916kb

input:

10 10
?c?c?cbac?
10 5 1
5 8 7
9 2 6
5 7 1
5 2 6
5 6 5
5 10 3
9 1 10
2 5 9
1 2 9

output:

16
16
11
16
11
16
16
5
11
0

result:

ok 10 lines

Test #6:

score: 0
Accepted
time: 44ms
memory: 447140kb

input:

50 100
?abacbacab?cbcbcb?acabcbabcbcacbababc?caba?acacbca
8 3 8
2 4 8
8 7 3
0 9 2
10 8 7
7 6 5
4 10 2
6 9 3
3 6 6
9 10 8
2 5 8
8 1 0
3 5 0
1 0 6
5 0 8
6 5 5
1 7 9
7 7 10
4 7 5
6 6 4
10 1 2
4 1 7
10 0 8
7 6 3
1 9 1
4 7 2
8 4 0
8 6 1
5 10 4
5 8 2
5 8 4
4 5 9
5 2 1
1 10 9
4 10 1
8 4 3
8 9 9
8 0 1
0 8 0...

output:

8
8
8
0
8
8
6
8
8
8
8
0
0
0
1
8
4
8
8
8
2
4
1
8
1
6
0
2
8
6
8
8
1
4
2
8
8
0
0
8
2
0
8
8
8
4
8
8
8
8
2
0
0
4
8
8
1
8
7
6
7
0
8
8
8
0
4
7
8
4
0
8
0
4
8
8
8
7
8
4
7
2
8
8
8
0
2
2
8
8
8
4
4
0
8
0
8
8
1
1

result:

ok 100 lines

Test #7:

score: 0
Accepted
time: 23ms
memory: 446972kb

input:

50 100
b????????bca?????c?b??ca?acac?b?b???ca?ab???a?a???
35 43 36
12 49 47
7 11 34
38 44 22
42 17 10
49 8 38
18 26 44
6 18 14
28 29 6
48 32 47
29 15 48
1 5 33
24 17 18
10 27 32
19 10 34
2 23 9
14 24 39
46 12 34
9 49 26
21 8 46
43 43 3
31 16 2
8 27 7
24 41 35
17 25 31
0 13 47
24 31 23
33 40 30
36 39...

output:

34272000
31599360
497244
34272000
17637520
12290752
34272000
93044
415832
34272000
34272000
0
34272000
16360704
27933952
0
34272000
33886976
7896832
12290752
718
24
0
34272000
34272000
0
34272000
34272000
34272000
32254720
0
5666944
34256640
34272000
34272000
12290752
30493248
34256640
20630016
0
10...

result:

ok 100 lines

Test #8:

score: 0
Accepted
time: 8ms
memory: 447144kb

input:

100 1000
c?cbababcabacbacbacacbacabcbabababacababcbcab?cbabacbacbcbcacbab?bcabcbcababcacbabacbcb?babcbab?baca
13 11 4
4 17 20
14 5 2
16 14 15
8 12 17
19 5 11
5 17 12
20 7 6
19 10 1
6 5 0
13 1 9
7 17 1
20 4 16
11 12 18
19 2 16
18 1 11
19 16 3
7 1 0
6 9 16
6 9 16
6 20 7
0 16 20
1 2 8
16 5 20
18 14 18
...

output:

16
15
14
16
16
16
16
16
8
2
16
8
16
16
16
16
16
2
16
16
16
0
1
16
16
5
1
5
16
16
16
16
16
15
16
13
16
15
2
16
16
1
8
16
16
16
15
0
16
15
16
16
16
16
8
8
16
16
16
16
16
16
8
16
16
1
8
8
16
16
1
16
1
0
16
2
2
16
7
16
16
8
16
16
16
16
1
16
14
16
16
16
16
5
16
16
14
16
11
16
15
11
2
1
8
16
16
7
16
5
16
...

result:

ok 1000 lines

Test #9:

score: 0
Accepted
time: 35ms
memory: 446996kb

input:

100 1000
?????c??????????????????????????b???a????a?????????????????????????c????????????????????????????????
43 38 20
27 40 32
39 27 33
28 50 43
50 3 46
38 46 14
42 48 10
45 25 28
49 10 49
38 17 42
41 49 22
41 18 44
46 47 25
17 44 35
34 43 22
47 42 32
32 44 40
36 41 24
45 38 45
49 44 18
42 34 32
43...

output:

490475656
143989836
119661929
707864467
10104
219100551
479284703
764218529
903846231
659694548
204287063
105920502
191779504
182802705
215438611
938692318
797581204
903917420
893995828
287222624
578695829
95654849
457810426
709349795
85961844
923330494
783007506
111119718
295402274
241594071
551680...

result:

ok 1000 lines

Test #10:

score: 0
Accepted
time: 36ms
memory: 446988kb

input:

100 1000
c???cacacbcab?cb?acb???ac?bab?bcbcbc?c?bcbcaba??b?ba?c?aca?a?bac?cbcbcba??ca?b????ac?baba?ab?cba?c?c
99 70 32
52 98 84
12 78 77
84 8 87
16 36 0
48 70 100
25 4 15
95 54 35
33 35 90
20 4 69
6 11 76
27 96 48
16 24 18
99 48 1
43 54 35
9 81 75
27 58 52
50 94 14
29 67 27
59 68 53
42 31 46
12 90 2...

output:

380160
380160
226896
64156
0
380160
92
380160
380160
92
0
380160
379648
0
380160
22500
380160
380160
380160
380160
380160
226896
380160
380160
226896
0
380160
380160
380160
380160
152672
380160
5624
226896
380160
380160
379648
0
380160
380160
366848
380160
226896
380160
92
374912
5624
380160
380160
...

result:

ok 1000 lines

Test #11:

score: 0
Accepted
time: 177ms
memory: 446984kb

input:

300 100000
abcacacbabacbcababcacacb?babacbcbacbcababcbcbabcacbcbacacabacacacbacbcbcacbabacbcbcbabcacbababcabcabcabababacbcacbacabcbacbacacacbababababacbcababcbcacacbcbabacabcabababcabacbcbcbabcabacbabacacbcbcacacacbcabcbabcbcabababababcacabcabababcbcbcbcbcabacbabacbabcacbcababacacbcbababababcacacaba...

output:

1
2
2
2
2
1
2
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
0
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
2
2
1
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
...

result:

ok 100000 lines

Test #12:

score: 0
Accepted
time: 182ms
memory: 447180kb

input:

300 100000
bcacbacacabacacbacacbabcabcacabcabcbcaba?cacbabcbacbabcbacacabacabcbacabcacacbcbabcbcabcabacbacbacabacabababcbcbcbabcbacbacabcacacabacbcbababcbcabacbabcbabacabcbabcbababababcbcbabacbacacbcabcabcbcbcbcabacabacacacbcbacabacbabca?acacbcacacbcbabacbcbcabca?babcacbc?acbacabacbcbcbcbacabababacb...

output:

4
4
4
4
0
4
4
4
4
4
4
4
4
4
0
1
3
3
4
4
4
1
4
0
4
0
4
4
4
4
4
4
4
0
4
1
1
4
4
0
4
3
4
4
4
4
4
4
4
3
4
1
1
3
4
0
4
4
3
4
4
4
4
4
4
4
4
4
4
0
4
4
4
3
4
3
4
4
4
1
4
3
0
4
4
4
4
4
0
4
0
4
4
4
4
1
4
4
4
4
4
0
1
4
4
1
4
0
4
3
4
0
4
3
1
0
4
4
1
1
4
4
4
3
4
4
4
3
0
4
1
4
4
4
0
4
4
4
4
1
0
4
1
0
4
4
4
4
4
4
...

result:

ok 100000 lines

Test #13:

score: 0
Accepted
time: 188ms
memory: 446980kb

input:

300 100000
bcbabcab?bab??acacbcabacbacbcacacbabcab?bcbcb?bababcabcabcabca?abcbc?bcacacb?abababcbcbcbcbaba?cba?abcabc?ababacbcbc?acbabcacacbabcab?ca?b?babcbacbacbcbcbacbc?c?cababcacbc?bcbcabcacbabc?acbabcbacac?cbcb?abcbabacabcbacabcacababcbabcbcb??bacbcbacabc?cabacac?cab?cabacacbcacacbabacacabcab?bac...

output:

20336
14528
22504
24576
24576
16992
24576
24576
24576
0
24576
1500
24576
24576
24576
0
23592
7808
24576
0
24576
23592
24576
24576
0
640
24576
2576
24392
24576
624
24576
24576
0
8
24448
8
24576
104
0
24576
24576
24392
0
0
24576
24576
24576
0
24576
24392
24576
24576
24576
23488
24576
24576
24576
24448...

result:

ok 100000 lines

Test #14:

score: 0
Accepted
time: 166ms
memory: 447144kb

input:

300 100000
cbabacacabcaca?abcb?b??cbc??cbacb?acab?b?bcabc?a??bab?a?a?a?ca?acac????c?c?caba?a???bcab?ababababc??babacacacbacabcb?bab?bcab?bacb???ba???c?b?cb?bababac?cb??acacbcba?acaca??bacb?cbc?c?bcbcbab?ba?c??bacacab?b?b?ac??babcbcb?bcbcbcb?c?c?cbac?ba?a?abc?cab?bc?ca?abacaca?abc??ac?aca?a??ca?cac??...

output:

964413406
726709206
0
110704627
192317202
753035749
238645875
836077477
0
0
67075693
196248
337185872
684300992
551066954
512400928
894774207
441158600
632725062
60181080
460670453
301321033
206790308
549405433
258628038
0
719626090
0
800239318
716729053
580760175
749271169
414309213
431703326
12786...

result:

ok 100000 lines

Test #15:

score: 0
Accepted
time: 228ms
memory: 447224kb

input:

300 100000
cbacacacbcba??bc???ab??bca?acabcbcb?cac?babacbac?ba??cbcbac?cb?abacaca?ac?c?caba?ac?cabc?ba?cbaba??ba??abcabac?abab?cabcacbc?cab??aca?bc??babacacab?c?babcacacb?cba?ac?a?abacabcbcbcaca?ab?bcabababc??ababa?abc???acbacbabcac?a?acabcac?cbabac?bacab??c?a??babcbacac??aca?bcba?ab?bcbacbacbabab?b...

output:

868189535
868189535
0
868189535
495627643
0
868189535
929370324
868189535
868189535
1474560
0
0
868189535
868189535
868189535
688551450
868189535
868189535
0
868189535
868189535
868189535
868189535
9381984
868189535
868189535
868189535
868189535
20457120
868189535
868189535
635204610
868189535
86818...

result:

ok 100000 lines

Test #16:

score: 0
Accepted
time: 163ms
memory: 446924kb

input:

300 100000
cbac?cac?cbcbca?abacba?ac?acab????abaca?abcbcabc?c??acb???b?ac??bcb?cacacabac?b?bc?a?b?abcac??a?acacab?bacacab??ca?b?c?acacabcbacacbc?c?acbcabcaca?a?cb?a??abcacab?b?cacb??ac??c?a?bacb?bacbaba?a?bc?babca??bababcababcab?ba?cba??cb?b?abc?cbcab?ba?ca?bacb??ca?bcb??cacbcbca???cbac?bacbc?cac?bc...

output:

63065600
280135711
280135711
280135711
280135711
280135711
280135711
280135711
0
579883317
270080
280135711
0
280135711
280135711
539129922
280135711
280135711
539129922
0
280135711
280135711
280135711
0
280135711
270080
256
280135711
280135711
280135711
280135711
280135711
280135711
631211594
28013...

result:

ok 100000 lines

Test #17:

score: 0
Accepted
time: 257ms
memory: 446876kb

input:

300 100000
??????a?a??c?c?????a??????????b???????????????????????????????????bc?b???????b????????c??????????a????????bc??a????????????c????a?????????????a?????b?????a????????c??ba????b?b???????????c?????????cbc?????????????????b???ab?b????ac?b??c??????c??a??ab???a?????b?????????a??b???????????ba????...

output:

356410997
164744264
978926692
879215541
267745269
399413378
667881560
356410997
818851047
356410997
989150636
266480908
0
356410997
303796242
234869176
137612115
356410997
0
24290767
273625930
411968196
567490332
356410997
0
356410997
807134302
646186244
356410997
356410997
577546772
527886169
35641...

result:

ok 100000 lines

Test #18:

score: 0
Accepted
time: 203ms
memory: 446980kb

input:

300 100000
?a?????????????????b??b??ac?????????????????????b???????c??a??????c????????ac??a???a????a????c????????????bc?????b???c???ab?????????????????????c??????c?b???????a?a?????????c??b??c???b????a?c????????????????c?bc????b???????????b????????bc????c????????????????????a?????????c?????a?????????...

output:

421472289
555100087
555100087
880376766
555100087
0
0
931054200
106211865
993171009
555100087
486740217
555100087
0
555100087
190774849
555100087
336407512
0
0
655515061
555100087
0
309808634
992320113
362042447
0
461962238
830139091
238473131
555100087
0
555100087
555100087
992320113
555100087
1745...

result:

ok 100000 lines

Extra Test:

score: 0
Extra Test Passed