QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#702851#6639. Disk TreestavageWA 3ms13376kbC++202.1kb2024-11-02 16:40:522024-11-02 16:40:53

Judging History

你现在查看的是最新测评结果

  • [2024-11-02 16:40:53]
  • 评测
  • 测评结果:WA
  • 用时:3ms
  • 内存:13376kb
  • [2024-11-02 16:40:52]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef long double LD;
#define int LL
#define double LD
const int N = 2e5 + 5;
const double eps = 1e-8;
const double PI = acosl(-1);
struct Point {
    double x, y;
    Point(double x = 0, double y = 0) : x(x), y(y) {}
};
typedef Point Vector;
Point operator+(Point a, Point b) { return Point(a.x + b.x, a.y + b.y); }
Point operator-(Point a, Point b) { return Point(a.x - b.x, a.y - b.y); }
Point operator*(Point a, double p) { return Point(a.x * p, a.y * p); }
Point operator/(Point a, double p) { return Point(a.x / p, a.y / p); }
bool operator<(const Point &a, const Point &b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
int sgn(double x)
{
    if (fabs(x) < eps) return 0;
    if (x < 0) return -1;
    return 1;
}
bool operator==(const Point &a, const Point &b) { return !sgn(a.x - b.x) && !sgn(a.y - b.y); }
struct Circle {
    Point c;
    double r;
    Circle(Point c = Point(), double r = 0) : c(c), r(r) {}
    inline Point point(double a)
    {
        return Point(c.x + cos(a) * r, c.y * sin(a) * r);
    }
    bool operator<(const Circle a) const { return c < a.c; }
};
inline Circle read_circle()
{
    Circle c;
    cin >> c.c.x >> c.c.y >> c.r;
    return c;
}
double xmult(Point p1, Point p2, Point p0)
{
    return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}

Circle c[N];
void solve()
{
    int f = -1;
    int n;
    cin >> n;
    for (int i = 0; i < n; i++) {
        c[i] = read_circle();
        // if (c[i].c.x - c[i].r < 0) f = 1;
        // else if (c[i].c.x + c[i].r > 1e9)
        //     f = 0;
    }
    // if (!f) {
    //     cout << "NO\n";
    //     return;
    // }
    cout << "YES\n";
    sort(c, c + n);
    for (int i = 1; i < n; i++) {
        cout << c[i - 1].c.x  << " " << c[i - 1].c.y << " " << c[i].c.x << " " << c[i].c.y << "\n";
    }
}
signed main()
{
    cin.tie(nullptr)->ios::sync_with_stdio(false);
    cout << fixed << setprecision(0);
    int _ = 1;
    while (_--) {
        solve();
    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 13376kb

input:

3
1 0 3
10 10 6
0 5 1

output:

YES
0 5 1 0
1 0 10 10

result:

ok answer = 1

Test #2:

score: 0
Accepted
time: 3ms
memory: 13116kb

input:

2
1 1 1
3 3 1

output:

YES
1 1 3 3

result:

ok answer = 1

Test #3:

score: -100
Wrong Answer
time: 0ms
memory: 13372kb

input:

5
10 10 10
2 0 1
20 20 1
3 20 1
20 0 1

output:

YES
2 0 3 20
3 20 10 10
10 10 20 0
20 0 20 20

result:

wrong answer Two line segments intersect, and it's not only the endpoints that intersect or line segments intersects/touches more than 2 disks