QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#701334#9536. Athlete Welcome Ceremonyucup-team133#AC ✓144ms81532kbC++2318.6kb2024-11-02 14:04:592024-11-02 14:05:01

Judging History

This is the latest submission verdict.

  • [2024-11-02 14:05:01]
  • Judged
  • Verdict: AC
  • Time: 144ms
  • Memory: 81532kb
  • [2024-11-02 14:04:59]
  • Submitted

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

template <class T> std::istream& operator>>(std::istream& is, std::vector<T>& v) {
    for (auto& e : v) {
        is >> e;
    }
    return is;
}

template <class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
    for (std::string_view sep = ""; const auto& e : v) {
        os << std::exchange(sep, " ") << e;
    }
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) {
    return y < x and (x = std::forward<U>(y), true);
}

template <class T, class U = T> bool chmax(T& x, U&& y) {
    return x < y and (x = std::forward<U>(y), true);
}

template <class T> void mkuni(std::vector<T>& v) {
    std::ranges::sort(v);
    auto result = std::ranges::unique(v);
    v.erase(result.begin(), result.end());
}

template <class T> int lwb(const std::vector<T>& v, const T& x) {
    return std::distance(v.begin(), std::ranges::lower_bound(v, x));
}

#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using namespace std;

using ll = long long;

using mint = atcoder::modint1000000007;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int n, Q;
    cin >> n >> Q;
    string S;
    cin >> S;

    vector dp(n + 1, vector(n + 1, vector<mint>(3, 0))), ndp(n + 1, vector(n + 1, vector<mint>(3, 0)));
    dp[0][0][0] = 1;
    int h = 0;
    bool f = true;
    for (char& c : S) {
        for (int i = 0; i <= h; i++) {
            for (int j = 0; j <= h; j++) {
                for (int k = 0; k < 3; k++) {
                    mint& val = dp[i][j][k];
                    if (val == 0) continue;
                    for (int nk = 0; nk < 3; nk++) {
                        if (c != '?' and nk != c - 'a') continue;
                        if (not f and k == nk) continue;
                        int ni = i, nj = j;
                        if (c == '?' and nk == 0) ni++;
                        if (c == '?' and nk == 1) nj++;
                        ndp[ni][nj][nk] += val;
                    }
                    val = 0;
                }
            }
        }
        h += (c == '?');
        swap(dp, ndp);
        f = false;
    }

    vector sum(h + 2, vector(h + 2, vector<mint>(h + 2, 0)));
    for (int i = 0; i <= h; i++) {
        for (int j = 0; i + j <= h; j++) {
            for (int k = 0; k < 3; k++) {
                sum[i + 1][j + 1][(h - (i + j)) + 1] += dp[i][j][k];
            }
        }
    }
    for (int i = 0; i <= h; i++) {
        for (int j = 0; j <= h + 1; j++) {
            for (int k = 0; k <= h + 1; k++) {
                sum[i + 1][j][k] += sum[i][j][k];
            }
        }
    }
    for (int i = 0; i <= h + 1; i++) {
        for (int j = 0; j <= h; j++) {
            for (int k = 0; k <= h + 1; k++) {
                sum[i][j + 1][k] += sum[i][j][k];
            }
        }
    }
    for (int i = 0; i <= h + 1; i++) {
        for (int j = 0; j <= h + 1; j++) {
            for (int k = 0; k <= h; k++) {
                sum[i][j][k + 1] += sum[i][j][k];
            }
        }
    }

    for (; Q--;) {
        int x, y, z;
        cin >> x >> y >> z;
        chmin(x, h);
        chmin(y, h);
        chmin(z, h);
        mint ans = sum[x + 1][y + 1][z + 1];
        cout << ans.val() << "\n";
    }
    return 0;
}

这程序好像有点Bug,我给组数据试试?

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3820kb

input:

6 3
a?b??c
2 2 2
1 1 1
1 0 2

output:

3
1
1

result:

ok 3 lines

Test #2:

score: 0
Accepted
time: 0ms
memory: 3824kb

input:

6 3
??????
2 2 2
2 3 3
3 3 3

output:

30
72
96

result:

ok 3 lines

Test #3:

score: 0
Accepted
time: 0ms
memory: 3652kb

input:

1 1
?
0 1 1

output:

2

result:

ok single line: '2'

Test #4:

score: 0
Accepted
time: 0ms
memory: 3544kb

input:

10 10
acab?cbaca
0 2 0
1 1 2
4 2 3
1 1 1
3 5 1
0 5 2
2 2 0
1 2 5
4 3 0
1 1 3

output:

0
1
1
1
1
0
1
1
1
1

result:

ok 10 lines

Test #5:

score: 0
Accepted
time: 0ms
memory: 3592kb

input:

10 10
?c?c?cbac?
10 5 1
5 8 7
9 2 6
5 7 1
5 2 6
5 6 5
5 10 3
9 1 10
2 5 9
1 2 9

output:

16
16
11
16
11
16
16
5
11
0

result:

ok 10 lines

Test #6:

score: 0
Accepted
time: 1ms
memory: 4100kb

input:

50 100
?abacbacab?cbcbcb?acabcbabcbcacbababc?caba?acacbca
8 3 8
2 4 8
8 7 3
0 9 2
10 8 7
7 6 5
4 10 2
6 9 3
3 6 6
9 10 8
2 5 8
8 1 0
3 5 0
1 0 6
5 0 8
6 5 5
1 7 9
7 7 10
4 7 5
6 6 4
10 1 2
4 1 7
10 0 8
7 6 3
1 9 1
4 7 2
8 4 0
8 6 1
5 10 4
5 8 2
5 8 4
4 5 9
5 2 1
1 10 9
4 10 1
8 4 3
8 9 9
8 0 1
0 8 0...

output:

8
8
8
0
8
8
6
8
8
8
8
0
0
0
1
8
4
8
8
8
2
4
1
8
1
6
0
2
8
6
8
8
1
4
2
8
8
0
0
8
2
0
8
8
8
4
8
8
8
8
2
0
0
4
8
8
1
8
7
6
7
0
8
8
8
0
4
7
8
4
0
8
0
4
8
8
8
7
8
4
7
2
8
8
8
0
2
2
8
8
8
4
4
0
8
0
8
8
1
1

result:

ok 100 lines

Test #7:

score: 0
Accepted
time: 1ms
memory: 4324kb

input:

50 100
b????????bca?????c?b??ca?acac?b?b???ca?ab???a?a???
35 43 36
12 49 47
7 11 34
38 44 22
42 17 10
49 8 38
18 26 44
6 18 14
28 29 6
48 32 47
29 15 48
1 5 33
24 17 18
10 27 32
19 10 34
2 23 9
14 24 39
46 12 34
9 49 26
21 8 46
43 43 3
31 16 2
8 27 7
24 41 35
17 25 31
0 13 47
24 31 23
33 40 30
36 39...

output:

34272000
31599360
497244
34272000
17637520
12290752
34272000
93044
415832
34272000
34272000
0
34272000
16360704
27933952
0
34272000
33886976
7896832
12290752
718
24
0
34272000
34272000
0
34272000
34272000
34272000
32254720
0
5666944
34256640
34272000
34272000
12290752
30493248
34256640
20630016
0
10...

result:

ok 100 lines

Test #8:

score: 0
Accepted
time: 1ms
memory: 4720kb

input:

100 1000
c?cbababcabacbacbacacbacabcbabababacababcbcab?cbabacbacbcbcacbab?bcabcbcababcacbabacbcb?babcbab?baca
13 11 4
4 17 20
14 5 2
16 14 15
8 12 17
19 5 11
5 17 12
20 7 6
19 10 1
6 5 0
13 1 9
7 17 1
20 4 16
11 12 18
19 2 16
18 1 11
19 16 3
7 1 0
6 9 16
6 9 16
6 20 7
0 16 20
1 2 8
16 5 20
18 14 18
...

output:

16
15
14
16
16
16
16
16
8
2
16
8
16
16
16
16
16
2
16
16
16
0
1
16
16
5
1
5
16
16
16
16
16
15
16
13
16
15
2
16
16
1
8
16
16
16
15
0
16
15
16
16
16
16
8
8
16
16
16
16
16
16
8
16
16
1
8
8
16
16
1
16
1
0
16
2
2
16
7
16
16
8
16
16
16
16
1
16
14
16
16
16
16
5
16
16
14
16
11
16
15
11
2
1
8
16
16
7
16
5
16
...

result:

ok 1000 lines

Test #9:

score: 0
Accepted
time: 8ms
memory: 8140kb

input:

100 1000
?????c??????????????????????????b???a????a?????????????????????????c????????????????????????????????
43 38 20
27 40 32
39 27 33
28 50 43
50 3 46
38 46 14
42 48 10
45 25 28
49 10 49
38 17 42
41 49 22
41 18 44
46 47 25
17 44 35
34 43 22
47 42 32
32 44 40
36 41 24
45 38 45
49 44 18
42 34 32
43...

output:

490475656
143989836
119661929
707864467
10104
219100551
479284703
764218529
903846231
659694548
204287063
105920502
191779504
182802705
215438611
938692318
797581204
903917420
893995828
287222624
578695829
95654849
457810426
709349795
85961844
923330494
783007506
111119718
295402274
241594071
551680...

result:

ok 1000 lines

Test #10:

score: 0
Accepted
time: 2ms
memory: 4976kb

input:

100 1000
c???cacacbcab?cb?acb???ac?bab?bcbcbc?c?bcbcaba??b?ba?c?aca?a?bac?cbcbcba??ca?b????ac?baba?ab?cba?c?c
99 70 32
52 98 84
12 78 77
84 8 87
16 36 0
48 70 100
25 4 15
95 54 35
33 35 90
20 4 69
6 11 76
27 96 48
16 24 18
99 48 1
43 54 35
9 81 75
27 58 52
50 94 14
29 67 27
59 68 53
42 31 46
12 90 2...

output:

380160
380160
226896
64156
0
380160
92
380160
380160
92
0
380160
379648
0
380160
22500
380160
380160
380160
380160
380160
226896
380160
380160
226896
0
380160
380160
380160
380160
152672
380160
5624
226896
380160
380160
379648
0
380160
380160
366848
380160
226896
380160
92
374912
5624
380160
380160
...

result:

ok 1000 lines

Test #11:

score: 0
Accepted
time: 21ms
memory: 13540kb

input:

300 100000
abcacacbabacbcababcacacb?babacbcbacbcababcbcbabcacbcbacacabacacacbacbcbcacbabacbcbcbabcacbababcabcabcabababacbcacbacabcbacbacacacbababababacbcababcbcacacbcbabacabcabababcabacbcbcbabcabacbabacacbcbcacacacbcabcbabcbcabababababcacabcabababcbcbcbcbcabacbabacbabcacbcababacacbcbababababcacacaba...

output:

1
2
2
2
2
1
2
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
0
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
2
2
1
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
...

result:

ok 100000 lines

Test #12:

score: 0
Accepted
time: 19ms
memory: 13532kb

input:

300 100000
bcacbacacabacacbacacbabcabcacabcabcbcaba?cacbabcbacbabcbacacabacabcbacabcacacbcbabcbcabcabacbacbacabacabababcbcbcbabcbacbacabcacacabacbcbababcbcabacbabcbabacabcbabcbababababcbcbabacbacacbcabcabcbcbcbcabacabacacacbcbacabacbabca?acacbcacacbcbabacbcbcabca?babcacbc?acbacabacbcbcbcbacabababacb...

output:

4
4
4
4
0
4
4
4
4
4
4
4
4
4
0
1
3
3
4
4
4
1
4
0
4
0
4
4
4
4
4
4
4
0
4
1
1
4
4
0
4
3
4
4
4
4
4
4
4
3
4
1
1
3
4
0
4
4
3
4
4
4
4
4
4
4
4
4
4
0
4
4
4
3
4
3
4
4
4
1
4
3
0
4
4
4
4
4
0
4
0
4
4
4
4
1
4
4
4
4
4
0
1
4
4
1
4
0
4
3
4
0
4
3
1
0
4
4
1
1
4
4
4
3
4
4
4
3
0
4
1
4
4
4
0
4
4
4
4
1
0
4
1
0
4
4
4
4
4
4
...

result:

ok 100000 lines

Test #13:

score: 0
Accepted
time: 20ms
memory: 13640kb

input:

300 100000
bcbabcab?bab??acacbcabacbacbcacacbabcab?bcbcb?bababcabcabcabca?abcbc?bcacacb?abababcbcbcbcbaba?cba?abcabc?ababacbcbc?acbabcacacbabcab?ca?b?babcbacbacbcbcbacbc?c?cababcacbc?bcbcabcacbabc?acbabcbacac?cbcb?abcbabacabcbacabcacababcbabcbcb??bacbcbacabc?cabacac?cab?cabacacbcacacbabacacabcab?bac...

output:

20336
14528
22504
24576
24576
16992
24576
24576
24576
0
24576
1500
24576
24576
24576
0
23592
7808
24576
0
24576
23592
24576
24576
0
640
24576
2576
24392
24576
624
24576
24576
0
8
24448
8
24576
104
0
24576
24576
24392
0
0
24576
24576
24576
0
24576
24392
24576
24576
24576
23488
24576
24576
24576
24448...

result:

ok 100000 lines

Test #14:

score: 0
Accepted
time: 16ms
memory: 15916kb

input:

300 100000
cbabacacabcaca?abcb?b??cbc??cbacb?acab?b?bcabc?a??bab?a?a?a?ca?acac????c?c?caba?a???bcab?ababababc??babacacacbacabcb?bab?bcab?bacb???ba???c?b?cb?bababac?cb??acacbcba?acaca??bacb?cbc?c?bcbcbab?ba?c??bacacab?b?b?ac??babcbcb?bcbcbcb?c?c?cbac?ba?a?abc?cab?bc?ca?abacaca?abc??ac?aca?a??ca?cac??...

output:

964413406
726709206
0
110704627
192317202
753035749
238645875
836077477
0
0
67075693
196248
337185872
684300992
551066954
512400928
894774207
441158600
632725062
60181080
460670453
301321033
206790308
549405433
258628038
0
719626090
0
800239318
716729053
580760175
749271169
414309213
431703326
12786...

result:

ok 100000 lines

Test #15:

score: 0
Accepted
time: 28ms
memory: 14428kb

input:

300 100000
cbacacacbcba??bc???ab??bca?acabcbcb?cac?babacbac?ba??cbcbac?cb?abacaca?ac?c?caba?ac?cabc?ba?cbaba??ba??abcabac?abab?cabcacbc?cab??aca?bc??babacacab?c?babcacacb?cba?ac?a?abacabcbcbcaca?ab?bcabababc??ababa?abc???acbacbabcac?a?acabcac?cbabac?bacab??c?a??babcbacac??aca?bcba?ab?bcbacbacbabab?b...

output:

868189535
868189535
0
868189535
495627643
0
868189535
929370324
868189535
868189535
1474560
0
0
868189535
868189535
868189535
688551450
868189535
868189535
0
868189535
868189535
868189535
868189535
9381984
868189535
868189535
868189535
868189535
20457120
868189535
868189535
635204610
868189535
86818...

result:

ok 100000 lines

Test #16:

score: 0
Accepted
time: 17ms
memory: 15592kb

input:

300 100000
cbac?cac?cbcbca?abacba?ac?acab????abaca?abcbcabc?c??acb???b?ac??bcb?cacacabac?b?bc?a?b?abcac??a?acacab?bacacab??ca?b?c?acacabcbacacbc?c?acbcabcaca?a?cb?a??abcacab?b?cacb??ac??c?a?bacb?bacbaba?a?bc?babca??bababcababcab?ba?cba??cb?b?abc?cbcab?ba?ca?bacb??ca?bcb??cacbcbca???cbac?bacbc?cac?bc...

output:

63065600
280135711
280135711
280135711
280135711
280135711
280135711
280135711
0
579883317
270080
280135711
0
280135711
280135711
539129922
280135711
280135711
539129922
0
280135711
280135711
280135711
0
280135711
270080
256
280135711
280135711
280135711
280135711
280135711
280135711
631211594
28013...

result:

ok 100000 lines

Test #17:

score: 0
Accepted
time: 135ms
memory: 78908kb

input:

300 100000
??????a?a??c?c?????a??????????b???????????????????????????????????bc?b???????b????????c??????????a????????bc??a????????????c????a?????????????a?????b?????a????????c??ba????b?b???????????c?????????cbc?????????????????b???ab?b????ac?b??c??????c??a??ab???a?????b?????????a??b???????????ba????...

output:

356410997
164744264
978926692
879215541
267745269
399413378
667881560
356410997
818851047
356410997
989150636
266480908
0
356410997
303796242
234869176
137612115
356410997
0
24290767
273625930
411968196
567490332
356410997
0
356410997
807134302
646186244
356410997
356410997
577546772
527886169
35641...

result:

ok 100000 lines

Test #18:

score: 0
Accepted
time: 144ms
memory: 81532kb

input:

300 100000
?a?????????????????b??b??ac?????????????????????b???????c??a??????c????????ac??a???a????a????c????????????bc?????b???c???ab?????????????????????c??????c?b???????a?a?????????c??b??c???b????a?c????????????????c?bc????b???????????b????????bc????c????????????????????a?????????c?????a?????????...

output:

421472289
555100087
555100087
880376766
555100087
0
0
931054200
106211865
993171009
555100087
486740217
555100087
0
555100087
190774849
555100087
336407512
0
0
655515061
555100087
0
309808634
992320113
362042447
0
461962238
830139091
238473131
555100087
0
555100087
555100087
992320113
555100087
1745...

result:

ok 100000 lines

Extra Test:

score: 0
Extra Test Passed