QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#697451#9434. Italian CuisineHojstyerTL 12ms3616kbC++204.0kb2024-11-01 14:08:432024-11-01 14:08:44

Judging History

你现在查看的是最新测评结果

  • [2024-11-01 14:08:44]
  • 评测
  • 测评结果:TL
  • 用时:12ms
  • 内存:3616kb
  • [2024-11-01 14:08:43]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

template <class T>
struct Point
{
    T x;
    T y;
    Point(T x_ = 0, T y_ = 0) : x(x_), y(y_) {}

    template <class U>
    operator Point<U>()
    {
        return Point<U>(U(x), U(y));
    }
    Point &operator+=(Point p) &
    {
        x += p.x;
        y += p.y;
        return *this;
    }
    Point &operator-=(Point p) &
    {
        x -= p.x;
        y -= p.y;
        return *this;
    }
    Point &operator*=(T v) &
    {
        x *= v;
        y *= v;
        return *this;
    }
    Point operator-() const
    {
        return Point(-x, -y);
    }
    friend Point operator+(Point a, Point b)
    {
        return a += b;
    }
    friend Point operator-(Point a, Point b)
    {
        return a -= b;
    }
    friend Point operator*(Point a, T b)
    {
        return a *= b;
    }
    friend Point operator*(T a, Point b)
    {
        return b *= a;
    }
    friend bool operator==(Point a, Point b)
    {
        return a.x == b.x && a.y == b.y;
    }
    friend istream &operator>>(istream &is, Point &p)
    {
        return is >> p.x >> p.y;
    }
    friend ostream &operator<<(ostream &os, Point p)
    {
        return os << "(" << p.x << ", " << p.y << ")";
    }
};

template <class T>
T dot(Point<T> a, Point<T> b)
{
    return a.x * b.x + a.y * b.y;
}

template <class T>
T cross(Point<T> a, Point<T> b)
{
    return a.x * b.y - a.y * b.x;
}

template <class T>
double distance(Point<T> a, Point<T> b)
{
    T xx = a.x - b.x, yy = a.y - b.y;
    return sqrtl(xx * xx + yy * yy);
}
template <class T>
T distance2(Point<T> a, Point<T> b)
{
    T xx = a.x - b.x, yy = a.y - b.y;
    return xx * xx + yy * yy;
}
template <class T>
T square(Point<T> p)
{
    return dot(p, p);
}

template <class T>
double length(Point<T> p)
{
    return sqrt(double(square(p)));
}

long double length(Point<long double> p)
{
    return sqrt(square(p));
}

template <class T>
struct Line
{
    Point<T> a;
    Point<T> b;
    Line(Point<T> a_ = Point<T>(), Point<T> b_ = Point<T>()) : a(a_), b(b_) {}
};

template <class T>
Point<T> rotate(Point<T> a)
{
    return Point(-a.y, a.x);
}

template <class T>
int sgn(Point<T> a)
{
    return a.y > 0 || (a.y == 0 && a.x > 0) ? 1 : -1;
}

template <class T>
bool pointOnLineLeft(Point<T> p, Line<T> l)
{
    return cross(l.b - l.a, p - l.a) > 0;
}

template <class T>
Point<T> lineIntersection(Line<T> l1, Line<T> l2)
{
    return l1.a + (l1.b - l1.a) * (cross(l2.b - l2.a, l1.a - l2.a) / cross(l2.b - l2.a, l1.a - l1.b));
}

template <class T>
bool pointOnSegment(Point<T> p, Line<T> l)
{
    return cross(p - l.a, l.b - l.a) == 0 && min(l.a.x, l.b.x) <= p.x && p.x <= max(l.a.x, l.b.x) && min(l.a.y, l.b.y) <= p.y && p.y <= max(l.a.y, l.b.y);
}

void solve()
{
    int n;
    cin >> n;
    int r;
    Point<int> o;
    cin >> o.x >> o.y >> r;

    vector<Point<int>> p(n);
    for (int i = 0; i < n; ++i)
        cin >> p[i].x >> p[i].y;

    ll ans = 0, res = 0;
    int pos = 1;
    for (int i = 0; i < n; ++i)
    {
        while (true)
        {
            if (cross(o - p[i], p[(pos + 1) % n] - p[i]) > 0)
                break;

            ll A = p[i].y - p[(pos + 1) % n].y, B = p[(pos + 1) % n].x - p[i].x, C = cross(p[i], p[(pos + 1) % n]);
            __int128_t le = A * o.x + B * o.y + C;
            le = le * le;
            __int128_t re = 1ll * r * r;
            re *= A * A + B * B;
            if (le < re)
                break;

            res += cross(p[i] - p[pos], p[i] - p[(pos + 1) % n]);
            pos = (pos + 1) % n;
        }
        ans = max(ans, res);
        res -= cross(p[pos] - p[i], p[pos] - p[i + 1]);
    }
    cout << ans << "\n";
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);

    int t = 1;
    cin >> t;
    while (t--)
    {
        solve();
    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3592kb

input:

3
5
1 1 1
0 0
1 0
5 0
3 3
0 5
6
2 4 1
2 0
4 0
6 3
4 6
2 6
0 3
4
3 3 1
3 0
6 3
3 6
0 3

output:

5
24
0

result:

ok 3 number(s): "5 24 0"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3616kb

input:

1
6
0 0 499999993
197878055 -535013568
696616963 -535013568
696616963 40162440
696616963 499999993
-499999993 499999993
-499999993 -535013568

output:

0

result:

ok 1 number(s): "0"

Test #3:

score: 0
Accepted
time: 12ms
memory: 3488kb

input:

6666
19
-142 -128 26
-172 -74
-188 -86
-199 -157
-200 -172
-199 -186
-195 -200
-175 -197
-161 -188
-144 -177
-127 -162
-107 -144
-90 -126
-87 -116
-86 -104
-89 -97
-108 -86
-125 -80
-142 -74
-162 -72
16
-161 -161 17
-165 -190
-157 -196
-154 -197
-144 -200
-132 -200
-128 -191
-120 -172
-123 -163
-138...

output:

5093
3086
2539
668
3535
7421
4883
5711
5624
1034
2479
3920
4372
2044
4996
5070
2251
4382
4175
1489
1154
3231
4038
1631
5086
14444
1692
6066
687
1512
4849
5456
2757
8341
8557
8235
1013
5203
10853
6042
6300
4480
2303
2728
1739
2187
3385
4266
6322
909
4334
1518
948
5036
1449
2376
3180
4810
1443
1786
47...

result:

ok 6666 numbers

Test #4:

score: -100
Time Limit Exceeded

input:

6660
19
-689502500 -712344644 121094647
-534017213 -493851833
-578925616 -506634533
-663335128 -540066520
-748890119 -585225068
-847722967 -641694086
-916653030 -716279342
-956235261 -766049951
-1000000000 -836145979
-963288744 -923225928
-948140134 -944751289
-920681768 -972760883
-872492254 -10000...

output:

4318385378
3808317869
6499773874
0
3192740445
408656
8952468057
827232793
4987338928
977414962
0
1790353348
2361104897
2167654068
1622218198
4294967296
6562501650
3431566130
4113793514
250192661
2372468324
1537439193
0
1610791914
0
1372003371
0
0
5064892637
642058377
5231098430
1323309443
843192688
...

result: