QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#696912 | #9254. Random Variables | ucup-team1134 | AC ✓ | 661ms | 11716kb | C++23 | 21.8kb | 2024-11-01 07:12:04 | 2024-11-01 07:12:04 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define vi vector<int>
#define vl vector<ll>
#define vii vector<pair<int,int>>
#define vll vector<pair<ll,ll>>
#define vvi vector<vector<int>>
#define vvl vector<vector<ll>>
#define vvii vector<vector<pair<int,int>>>
#define vvll vector<vector<pair<ll,ll>>>
#define vst vector<string>
#define pii pair<int,int>
#define pll pair<ll,ll>
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define mkunique(x) sort(all(x));(x).erase(unique(all(x)),(x).end())
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=1005,INF=15<<26;
//modint+畳み込み+逆元テーブル
// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)
#include <algorithm>
#include <array>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <utility>
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
for (long long a : {2, 7, 61}) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) {
if (n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
using mint=atcoder::modint;
mint comb[MAX][MAX];
mint dp[MAX][MAX];
int main(){
std::ifstream in("text.txt");
std::cin.rdbuf(in.rdbuf());
cin.tie(0);
ios::sync_with_stdio(false);
int Q,P;cin>>Q>>P;
mint::set_mod(P);
comb[0][0]=1;
for(int i=0;i<=1000;i++){
for(int j=0;j<=i;j++){
comb[i+1][j]+=comb[i][j];
comb[i+1][j+1]+=comb[i][j];
}
}
while(Q--){
ll N,M;cin>>N>>M;
mint ans=0;
mint al=mint(M).pow(N);
for(ll s=0;s<=N;s++){
int len;
if(s==0) len=N+2;
else len=N/s+2;
for(int i=0;i<=len+2;i++){
for(int j=0;j<=N;j++) dp[i][j]=0;
if(M-i>=0) dp[i][0]=1;
}
for(int i=len-1;i>=0;i--){
for(int j=1;j<=N;j++){
if(j) dp[i][j]+=dp[i][j-1];
if(j-1>=0&&j-1-s>=0) dp[i][j]-=comb[j-1][s]*dp[i+1][j-1-s];
dp[i][j]*=(M-i);
}
}
//cout<<s<<" "<<dp[0][N].val()<<endl;
ans+=al-dp[0][N];
}
cout<<ans.val()<<"\n";
}
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 3ms
memory: 11716kb
input:
3 123456789 3 2 5 5 7 7
output:
18 7145 2066323
result:
ok 3 lines
Test #2:
score: 0
Accepted
time: 0ms
memory: 11684kb
input:
100 2 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
result:
ok 100 lines
Test #3:
score: 0
Accepted
time: 0ms
memory: 11512kb
input:
100 3 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 0 1 2 0 1 2 0 1 2 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0 1 2 0 1 2 2 0 2 2 0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 2 2 0 2 2 0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 1 2 0 1 2 0 1 2 0 1
result:
ok 100 lines
Test #4:
score: 0
Accepted
time: 3ms
memory: 11500kb
input:
100 4 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 0 1 2 3 0 1 2 2 2 0 0 2 2 0 0 2 2 3 2 3 0 3 2 3 0 3 2 0 0 0 0 0 0 0 0 0 0 1 2 3 0 1 2 3 0 1 2 2 0 2 0 2 0 2 0 2 0 3 0 3 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 1 2 3 0 1 2 2 0 2 0 2 0 2 0 2 0
result:
ok 100 lines
Test #5:
score: 0
Accepted
time: 3ms
memory: 11508kb
input:
100 5 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 0 1 2 3 4 0 2 1 2 0 0 2 1 2 0 0 3 3 1 3 0 3 3 1 3 0 4 4 2 4 0 4 4 2 4 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 0 1 2 3 4 0 2 3 3 2 0 2 3 3 2 0 3 4 1 2 0 3 4 1 2 0 4 4 4 4 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0
result:
ok 100 lines
Test #6:
score: 0
Accepted
time: 0ms
memory: 11384kb
input:
100 6 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 5 0 1 2 3 4 2 0 0 2 0 0 2 0 0 2 3 0 3 0 3 0 3 0 3 0 4 2 0 4 2 0 4 2 0 4 5 2 3 2 5 0 5 2 3 2 0 0 0 0 0 0 0 0 0 0 1 0 3 4 3 0 1 0 3 4 2 2 0 2 2 0 2 2 0 2 3 0 3 0 3 0 3 0 3 0 4 2 0 4 2 0 4 2 0 4
result:
ok 100 lines
Test #7:
score: 0
Accepted
time: 0ms
memory: 11496kb
input:
100 7 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 5 6 0 1 2 3 2 6 5 6 2 0 0 2 6 5 3 4 2 3 6 3 0 3 4 2 4 2 3 5 2 5 0 4 2 3 5 5 3 6 5 4 0 5 5 3 6 0 6 1 1 6 0 6 0 6 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 0 1 2 3 2 1 4 4 1 2 0 2 1 4 3 3 4 3 4 4 0 3 3 4
result:
ok 100 lines
Test #8:
score: 0
Accepted
time: 3ms
memory: 11512kb
input:
100 8 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 5 6 7 0 1 2 2 6 4 4 6 2 0 0 2 6 3 2 3 4 3 6 3 0 3 2 4 4 0 0 4 4 0 0 4 4 5 6 3 4 1 2 7 0 5 6 6 4 6 0 6 4 6 0 6 4 7 4 3 0 7 4 3 0 7 4 0 0 0 0 0 0 0 0 0 0 1 6 3 4 5 2 7 0 1 6 2 4 6 0 2 4 6 0 2 4
result:
ok 100 lines
Test #9:
score: 0
Accepted
time: 3ms
memory: 11504kb
input:
100 9 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 2...
output:
1 2 3 4 5 6 7 8 0 1 2 6 3 2 3 6 2 0 0 2 3 0 6 0 6 3 6 3 0 3 4 8 3 4 5 6 4 2 0 4 5 2 0 2 8 0 8 5 0 5 6 0 0 6 0 0 6 0 0 6 7 3 6 1 3 3 4 3 0 7 8 8 6 5 8 3 2 8 0 8 0 0 0 0 0 0 0 0 0 0 1 8 3 4 2 6 7 5 0 1
result:
ok 100 lines
Test #10:
score: 0
Accepted
time: 4ms
memory: 11496kb
input:
100 10 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 ...
output:
1 2 3 4 5 6 7 8 9 0 2 6 2 0 0 2 6 2 0 0 3 8 1 8 5 8 3 6 3 0 4 4 2 4 0 4 4 2 4 0 5 0 5 0 5 0 5 0 5 0 6 2 8 4 0 6 2 8 4 0 7 8 3 2 5 2 3 8 7 0 8 4 6 2 0 8 4 6 2 0 9 4 9 4 5 4 9 4 9 0 0 0 0 0 0 0 0 0 0 0
result:
ok 100 lines
Test #11:
score: 0
Accepted
time: 3ms
memory: 11428kb
input:
100 11 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 10 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 8 1 8 ...
output:
1 2 3 4 5 6 7 8 9 10 2 6 1 9 8 9 1 6 2 0 3 7 7 9 8 10 10 3 6 3 4 0 5 5 10 10 8 9 9 6 5 0 4 10 6 7 10 4 2 7 6 10 4 5 3 2 0 7 2 5 7 5 2 8 6 1 6 0 3 6 8 6 6 3 2 4 8 3 6 9 9 8 10 2 8 6 10 9 3 1 10 0 4 3 0 6 0 7 4 9
result:
ok 100 lines
Test #12:
score: 0
Accepted
time: 251ms
memory: 11432kb
input:
10 972033073 576 523187654 758 588616188 30 532959085 476 481773028 573 76725430 520 142462406 865 820120297 687 526533288 913 38106557 67 924529654
output:
259748390 909910217 708973357 300073565 463921261 889897372 587262932 255642402 868975954 14589849
result:
ok 10 lines
Test #13:
score: 0
Accepted
time: 324ms
memory: 11448kb
input:
10 922366485 846 278501607 683 609355362 44 978777279 545 730718412 926 323835432 883 761846029 623 408215612 989 588832935 449 743830620 259 183431187
output:
461786112 672633342 164805246 547995105 9661617 154501063 370848893 402005970 886523490 435107511
result:
ok 10 lines
Test #14:
score: 0
Accepted
time: 309ms
memory: 11496kb
input:
10 13890975 949 837425969 667 981449995 991 564074312 501 604745038 593 640307170 128 408163542 80 976891742 930 710947599 852 333118419 250 333252788
output:
3898759 9290500 7087084 4913904 196250 1746549 9627740 8673120 10274253 10549775
result:
ok 10 lines
Test #15:
score: 0
Accepted
time: 170ms
memory: 11416kb
input:
10 105576445 649 937885257 141 713063090 253 716966251 845 330657011 347 664392407 810 50478969 389 530582574 228 199722046 85 256258366 605 3721959
output:
22721419 27962190 85541228 53950260 35288938 100176945 86409840 102331663 55591445 14790745
result:
ok 10 lines
Test #16:
score: 0
Accepted
time: 220ms
memory: 11492kb
input:
10 445185474 268 687201814 929 296077349 690 202741564 372 661889855 442 989604795 367 456833096 702 862601129 795 37538865 556 131444040 108 645857776
output:
39577672 390323147 423333756 49417686 12978114 278291170 60346062 410583855 68429394 296833176
result:
ok 10 lines
Test #17:
score: 0
Accepted
time: 296ms
memory: 11520kb
input:
10 265384486 870 503808438 959 733458117 126 226376632 979 205878607 747 270352323 339 384431347 373 659485098 597 832514575 832 906898547 12 869891031
output:
54820154 83262107 48675762 32938269 169458409 153632065 105152812 48645927 29870948 83831862
result:
ok 10 lines
Test #18:
score: 0
Accepted
time: 209ms
memory: 11656kb
input:
10 869896294 256 326197921 496 115501273 861 238744067 581 600444623 619 536213251 89 898877607 136 353575223 860 349472278 491 770026371 668 622723560
output:
678111040 344947200 90686837 157367547 295943299 25262829 81930384 532341712 23048077 475131428
result:
ok 10 lines
Test #19:
score: 0
Accepted
time: 382ms
memory: 11512kb
input:
10 692092859 831 647975618 792 737778459 392 768554014 854 612888229 31 148093584 793 559010229 970 237393805 339 914914862 831 979073722 988 738224088
output:
324659472 16793498 421391172 416475848 59704753 347151224 415078841 680610884 397373492 296521551
result:
ok 10 lines
Test #20:
score: 0
Accepted
time: 163ms
memory: 11496kb
input:
10 827165684 577 720722656 383 778750361 951 59165685 502 993162103 589 166261195 500 816688874 40 625075150 331 160531509 394 578798823 181 710984062
output:
736529364 199088527 528654835 586634074 442300715 383600380 707706396 763397655 534310310 338272096
result:
ok 10 lines
Test #21:
score: 0
Accepted
time: 171ms
memory: 11516kb
input:
10 691312083 185 445519030 93 44970277 951 662144708 252 766000017 83 911805458 424 816227326 770 136026896 354 763387805 247 458147285 747 14566368
output:
411209183 132362175 110569626 664410537 241484162 480388660 264805387 294178848 147876955 371900799
result:
ok 10 lines
Test #22:
score: 0
Accepted
time: 661ms
memory: 11512kb
input:
10 691312083 1000 445519030 1000 44970277 1000 662144708 1000 766000017 1000 911805458 1000 816227326 1000 136026896 1000 763387805 1000 458147285 747 14566368
output:
365043118 14826361 571573673 63977538 484010015 499398766 433242788 43269113 412491407 371900799
result:
ok 10 lines
Extra Test:
score: 0
Extra Test Passed