QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#696890 | #7704. Plus Minus Four Squares | snowythecat | AC ✓ | 23ms | 18780kb | C++20 | 11.9kb | 2024-11-01 05:42:16 | 2024-11-01 05:42:18 |
Judging History
answer
//must be compiled with c++20
/*
#pragma GCC target ("avx2")
#pragma GCC optimize ("O2")
#pragma GCC optimize ("unroll-loops")
*/
#pragma GCC optimize ("unroll-loops")
#include <algorithm>
#include <bits/stdc++.h>
#include <cerrno>
#include <ext/pb_ds/assoc_container.hpp>
#include <type_traits>
using namespace __gnu_pbds;
using namespace std;
#define fasterthanlight cin.tie(0); ios::sync_with_stdio(0);
#define ll long long
#define lll __int128
const ll inf = 1e9 + 7;
const ll inf2 = 1e9 + 9;
const ll inff= 998244353;
const ll infh = (1LL << 61) - 1;
#define pll pair<ll,ll>
#define pii pair<int,int>
#define vi vector<int>
#define vll vector<ll>
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define pb push_back
#define f0(i,n) for (int i=0;i<n;i++)
#define f1(i,n) for (int i=1;i<=n;i++)
#define ff0(i,n) for (int i=n-1;i>-1;i--)
#define ff1(i,n) for (int i=n;i>0;i--)
#define fs(i,a,b) for (int i=a;i<b;i++)
#define testcases int tzxhicjkha; cin>>tzxhicjkha;while (tzxhicjkha--)
#define usingfloats cout<<setprecision(20)
#define ineedtohash mll iqknabxiopk=1;for (ll iqknabxiop=0;iqknabxiop<HASHPOWMAX;iqknabxiop++){pows[iqknabxiop]=iqknabxiopk;iqknabxiopk*=B;}
#define sz(x) ((int)(x.size()))
template <class T> auto vect(const T& v, int n) { return vector<T>(n, v); }
template <class T, class... D> auto vect(const T& v, int n, D... m) {
return vector<decltype(vect(v, m...))>(n, vect(v, m...));
}
//2*10^6 powers for hashing
const ll HASHPOWMAX=2000005;
int msb(int n)
{
if (n==0){
//cout<<"F";
return 0;
}
int k = __builtin_clz(n);
return 31 - k;
}
ll lmsb(ll n)
{
if (n==0){
//cout<<"F";
return 0;
}
int k = __builtin_clzll(n);
return 63 - k;
}
//I have no idea if the below code is safe or good
istream &operator>>(istream &is,__int128 &v) {
string s;
is>>s;
v=0;
for(auto &it:s) if(isdigit(it)) v=v*10+it-'0';
if(s[0]=='-') v*=-1;
return is;
}
ostream &operator<<(ostream &os,const __int128 &v) {
if(v==0) return (os<<"0");
__int128 num=v;
if(v<0) os<<'-',num=-num;
string s;
for(;num>0;num/=10) s.pb((char)(num%10)+'0');
reverse(all(s));
return (os<<s);
}
/*
template<typename T, typename Q>ostream &operator<<(ostream &os,const pair<T,Q> &v) {
return (os<<v.first<<" "<<v.second);
}
*/
//some cursed cin vector shit
template<typename T> istream &operator>>(istream &is,vector<T> &v) {
for (T&i:v){
is>>i;
}
return is;
}
template<typename T> ostream &operator<<(ostream &os,const vector<T> &v) {
if (v.empty()){
return os;
}
for (int i=0;i<v.size()-1;i++){
os<<v[i]<<" ";
}
return os<<v[v.size()-1];
}
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
//const ll B = 100;
const ll B = uniform_int_distribution<ll>(1000, inf - 1)(rng);
/*
//some cursed code
//allows int x=in;
struct {
template<class T>
operator T() {
T x; std::cin >> x; return x;
}
} in;
//breaks if string
//so do string s = (string)in;
*/
//ty Mark for modint code that I will change
template<long long MOD>
struct ModInt {
long long v;
ModInt() {
v=0;
}
ModInt(long long _v) {
v = _v % MOD;
if (v < 0) {
v += MOD;
}
}
friend ModInt pow(ModInt base, long long exp) {
ModInt res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
base *= base;
exp >>= 1;
}
return res;
}
ModInt &operator+=(ModInt b) {
if ((v += b.v) >= MOD) {
v -= MOD;
}
return *this;
}
ModInt &operator-=(ModInt b) {
if ((v -= b.v) < 0) {
v += MOD;
}
return *this;
}
ModInt &operator*=(ModInt b) {
if constexpr (MOD==infh){
//UNSAFE CODE PROBABLY
uint64_t l1 = uint32_t(v), h1 = v >> 32;
uint64_t l2 = uint32_t(b.v), h2 = b.v >> 32;
uint64_t l = l1 * l2, m = l1 * h2 + l2 * h1, h = h1 * h2;
uint64_t ret = (l & MOD) + (l >> 61) + (h << 3) + (m >> 29) + (m << 35 >> 3) + 1;
ret = (ret & MOD) + (ret >> 61);
ret = (ret & MOD) + (ret >> 61);
v = ret - 1;
return *this;
}
else if constexpr (MOD<=INT_MAX){
//if less than or equal to INT_MAX, lll isn't needed
v=v * b.v % MOD;
return *this;
}
else{
v = (__int128)1 * v * b.v % MOD;
return *this;
}
}
//division is scuffed
ModInt &operator/=(ModInt b) {
*this *= pow(b, MOD - 2);
return *this;
}
friend ModInt operator+(ModInt a, ModInt b) {
return a += b;
}
friend ModInt operator-(ModInt a, ModInt b) {
return a -= b;
}
friend ModInt operator*(ModInt a, ModInt b) {
return a *= b;
}
friend ModInt operator/(ModInt a, ModInt b) {
return a /= b;
}
friend istream &operator>>(istream &is, ModInt &a) {
long long x;
is >> x;
a = ModInt(x);
return is;
}
friend ostream &operator<<(ostream &os, ModInt a) {
return os << a.v;
}
bool operator==(const ModInt& y) const{
return v == y.v;
}
bool operator!=(const ModInt& y) const{
return v != y.v;
}
ModInt& operator++() {
v++;
if (v == MOD) v = 0;
return *this;
}
ModInt& operator--() {
if (v == 0) v = MOD;
v--;
return *this;
}
ModInt operator++(int) {
ModInt result = *this;
++*this;
return result;
}
ModInt operator--(int) {
ModInt result = *this;
--*this;
return result;
}
//bad operators for completeness sake
bool operator>(const ModInt& y) const{
return v > y.v;
}
bool operator>=(const ModInt& y) const{
return v >= y.v;
}
bool operator<=(const ModInt& y) const{
return v <= y.v;
}
bool operator<(const ModInt& y) const{
return v < y.v;
}
};
using mll = ModInt<infh>;
using mint = ModInt<inf>;
using minf = ModInt<inff>;
ll exp(ll x, ll n, ll m=inf) {
assert(n >= 0);
x %= m; // note: m * m must be less than 2^63 to avoid ll overflow
ll res = 1;
while (n > 0) {
if (n % 2 == 1) { res = res * x % m; }
x = x * x % m;
n /= 2;
}
return res;
}
ll expu(ll x, ll n) {
assert(n >= 0);
ll res = 1;
while (n > 0) {
if (n % 2 == 1) { res = res * x; }
x = x * x;
n /= 2;
}
return res;
}
mll exph(mll base, ll exp) {
mll res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
base *= base;
exp >>= 1;
}
return res;
}
minf expf(minf base, ll exp) {
minf res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
base *= base;
exp >>= 1;
}
return res;
}
mint expo(mint base, ll exp) {
mint res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
base *= base;
exp >>= 1;
}
return res;
}
vector<mll> pows(HASHPOWMAX);
const mll HMODINV=exph(B,infh-2);
struct hashPart {
mll value;
int len;
hashPart() {
value=0;
len=0;
}
hashPart(mll x, int y) : value(x), len(y) {}
hashPart operator+=(hashPart b) {
hashPart a=hashPart(value * pows[b.len] + b.value, len + b.len);
(*this).value=a.value;
(*this).len=a.len;
return *this;
}
hashPart operator+(hashPart b) {
return hashPart(value * pows[b.len] + b.value, len + b.len);
}
bool operator==(hashPart b) {
return value == b.value;
}
};
template<class T>
struct hashString {
vector<mll> hash;
hashString(T s) {
hash.resize(int(s.size()) + 1);
for (int i = 0; i < int(s.size()); i++) {
hash[i + 1] = (hash[i] * B + s[i]);
}
while (int(pows.size()) < int(hash.size())) {
pows.push_back(pows.back() * B);
}
}
hashPart getHash(int l, int r) {
return hashPart(hash[r] -hash[l] * pows[r - l], r - l);
}
hashPart getHash() {
return getHash(0, hash.size() - 1);
}
};
//I don't understand the below code, all I know is it's good for hashing apparently
struct custom_hash {
static uint64_t splitmix64(uint64_t x) {
// http://xorshift.di.unimi.it/splitmix64.c
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator()(uint64_t x) const {
static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
};
ll es(ll x1, ll y1, ll x2, ll y2){
return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
}
ll man(ll x1, ll y1, ll x2, ll y2){
return abs(x1-x2)+abs(y1-y2);
}
minf choose(int n,int k){
if (k>n){
return 0;
}
minf ret=1;
for (int i=n;i>n-k;i--){
ret*=i;
}
for (int i=1;i<=k;i++){
ret/=i;
}
return ret;
}
//stolen from geeks for geeks
vector<int> sieve(int n)
{
// Create a boolean array "prime[0..n]" and initialize
// all entries it as true. A value in prime[i] will
// finally be false if i is Not a prime, else true.
bool prime[n + 1];
memset(prime, true, sizeof(prime));
for (int p = 2; p * p <= n; p++) {
// If prime[p] is not changed, then it is a prime
if (prime[p] == true) {
// Update all multiples of p greater than or
// equal to the square of it numbers which are
// multiple of p and are less than p^2 are
// already been marked.
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
vector<int> ret;
// Print all prime numbers
for (int p = 2; p <= n; p++)
if (prime[p])
ret.pb(p);
return ret;
}
void setup(){
}
typedef tree<double,null_type,less_equal<double>,rb_tree_tag,tree_order_statistics_node_update> indexed_set;
void solve(){
int n;
cin>>n;
int q=sqrt(n);
int ans=0;
for (int i=q/2;i<=q;i++){
for (int j=0;j<=i;j++){
for (int k=0;k<=j;k++){
for (int l=0;l<=k;l++){
for (int bits=0;bits<16;bits+=2){
//0 is a +
bool g=true;
g&=(!((i==0&&(bits&(1<<0)))||
(j==0&&(bits&(1<<1)))||
(k==0&&(bits&(1<<2)))||
(l==0&&(bits&(1<<3)))));
g&=!(
((i==j)&&(((bits&(1<<0))==0)!=((bits&(1<<1))==0)))||
((j==k)&&(((bits&(1<<1))==0)!=((bits&(1<<2))==0)))||
((k==l)&&(((bits&(1<<2))==0)!=((bits&(1<<3))==0)))
);
int su=i*i*(((bits&(1<<0))==0)*2-1)+
j*j*(((bits&(1<<1))==0)*2-1)+
k*k*(((bits&(1<<2))==0)*2-1)+
l*l*(((bits&(1<<3))==0)*2-1);
ans+=(su==n)*g;
}
}
}
}
}
cout<<ans<<"\n";
}
signed main() {
setup();
//usingfloats;
fasterthanlight;
//ineedtohash;
//testcases{
solve();
//}
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 18648kb
input:
64
output:
12
result:
ok single line: '12'
Test #2:
score: 0
Accepted
time: 0ms
memory: 18652kb
input:
65
output:
10
result:
ok single line: '10'
Test #3:
score: 0
Accepted
time: 3ms
memory: 18696kb
input:
2023
output:
245
result:
ok single line: '245'
Test #4:
score: 0
Accepted
time: 0ms
memory: 18780kb
input:
0
output:
1
result:
ok single line: '1'
Test #5:
score: 0
Accepted
time: 23ms
memory: 18660kb
input:
5000
output:
951
result:
ok single line: '951'
Test #6:
score: 0
Accepted
time: 0ms
memory: 18732kb
input:
1024
output:
182
result:
ok single line: '182'
Test #7:
score: 0
Accepted
time: 3ms
memory: 18660kb
input:
2048
output:
355
result:
ok single line: '355'
Test #8:
score: 0
Accepted
time: 16ms
memory: 18620kb
input:
4096
output:
708
result:
ok single line: '708'
Test #9:
score: 0
Accepted
time: 0ms
memory: 18668kb
input:
1
output:
1
result:
ok single line: '1'
Test #10:
score: 0
Accepted
time: 3ms
memory: 18624kb
input:
2
output:
1
result:
ok single line: '1'
Test #11:
score: 0
Accepted
time: 4ms
memory: 18680kb
input:
4
output:
2
result:
ok single line: '2'
Test #12:
score: 0
Accepted
time: 0ms
memory: 18636kb
input:
3
output:
1
result:
ok single line: '1'
Test #13:
score: 0
Accepted
time: 2ms
memory: 18720kb
input:
1111
output:
131
result:
ok single line: '131'