QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#696627#7901. Basic Substring Structureucup-team3646#TL 937ms47912kbC++2022.7kb2024-10-31 23:56:222024-10-31 23:56:23

Judging History

你现在查看的是最新测评结果

  • [2024-10-31 23:56:23]
  • 评测
  • 测评结果:TL
  • 用时:937ms
  • 内存:47912kb
  • [2024-10-31 23:56:22]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define elif else if
#define vi vector<int>
#define vll vector<ll>
#define vvi vector<vi>
#define pii pair<int,int>


#define repname(a, b, c, d, e, ...) e
#define rep(...)                    repname(__VA_ARGS__, rep3, rep2, rep1, rep0)(__VA_ARGS__)
#define rep0(x)                     for (int rep_counter = 0; rep_counter < (x); ++rep_counter)
#define rep1(i, x)                  for (int i = 0; i < (x); ++i)
#define rep2(i, l, r)               for (int i = (l); i < (r); ++i)
#define rep3(i, l, r, c)            for (int i = (l); i < (r); i += (c))





struct ScalarInput {
    template<class T>
    operator T(){
        T ret;
        cin >> ret;
        return ret;
    }
};
struct VectorInput {
    size_t n;
    VectorInput(size_t n): n(n) {}
    template<class T>
    operator vector<T>(){
        vector<T> ret(n);
        for(T &x : ret) cin >> x;
        return ret;
    }
};
ScalarInput input(){ return ScalarInput(); }
VectorInput input(size_t n){ return VectorInput(n); }

template<typename T>
void print(vector<T> a){
  for(int i=0;i<a.size();i++){
    cout<<a[i]<<" \n"[i+1==a.size()];
  }
}

template<class T>
void print(T x){
    cout << x << '\n';
}
 
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail){
  cout << head << ' ';
  print(forward<Tail>(tail)...);
}


#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>


#ifdef _MSC_VER
#include <intrin.h>
#endif

#if __cplusplus >= 202002L
#include <bit>
#endif

namespace atcoder {

namespace internal {

#if __cplusplus >= 202002L

using std::bit_ceil;

#else

unsigned int bit_ceil(unsigned int n) {
    unsigned int x = 1;
    while (x < (unsigned int)(n)) x *= 2;
    return x;
}

#endif

int countr_zero(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

constexpr int countr_zero_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

#if __cplusplus >= 201703L

template <class S, auto op, auto e> struct segtree {
    static_assert(std::is_convertible_v<decltype(op), std::function<S(S, S)>>,
                  "op must work as S(S, S)");
    static_assert(std::is_convertible_v<decltype(e), std::function<S()>>,
                  "e must work as S()");

#else

template <class S, S (*op)(S, S), S (*e)()> struct segtree {

#endif

  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
        size = (int)internal::bit_ceil((unsigned int)(_n));
        log = internal::countr_zero((unsigned int)size);
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() const { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder

using namespace atcoder;
using mint=modint1000000007;

int B=121432;
mint powB[201010];

using S=pair<mint,int>;
S op(S l,S r){
  mint val=l.first*powB[r.second]+r.first;
  return {val,l.second+r.second};
}

S e(){return {0,1};}

void solve(){
  int n;
  cin>>n;
  vi a(n);
  rep(i,n)cin>>a[i];
  vector<S>init(n);
  rep(i,n){
    init[i]={a[i],1};
  }

  ll init_ans=0;
  segtree<S,op,e>seg(init);
  vll diff(n,0);
  vector<map<int,ll>>mp(n);
  vector<ll>X0(n+1),X1(n+1);
  rep(l,n){
    int ok=l;
    int ng=n+1;
    while(abs(ok-ng)>1){
      int mid=(ok+ng)/2;
      int len=mid-l;
      if(seg.prod(l,mid)==seg.prod(0,len))ok=mid;
      else ng=mid;
    }
    int len=ok-l;
    int l1=0;
    int r1=len;
    int l2=l;
    int r2=l+len;
    init_ans+=len;

    if(l==0)continue;

    // todo : 高速化
    // ll tmp=len;
    // rep(j,l1,min(r1,l2)){
    //   diff[j]-=tmp;
    //   tmp--;
    // }
    // tmp=len;
    // rep(j,l2,r2){
    //   diff[j]-=tmp;
    //   tmp--;
    // }

    if(r1<=l2){
      X0[l1]+=-len;
      X1[l1]+=1;
      X1[r1]-=1;

      X0[l2]+=-len;
      X1[l2]+=1;
      X1[min(n,r2)]-=1;
    }

    else{
      X0[l1]+=-len;
      X1[l1]+=1;
      X1[r2]-=1;
      X0[l2]-=l2-l1;
    }



    if(l+len==n)continue;

    if(a[len]!=a[l+len]){
      // 増加する可能性があるやつ
      // a[len] を a[l + len] に置き換える
      seg.set(len,{a[l+len],1});
      {
        ok=l;
        ng=n+1;
        while(abs(ok-ng)>1){
          int mid=(ok+ng)/2;
          int len2=mid-l;
          if(seg.prod(l,mid)==seg.prod(0,len2))ok=mid;
          else ng=mid;
        }
        int len2=ok-l;
        assert(len!=len2);
        if(len2>len){
          mp[len][a[l+len]]+=len2-len;
        }
      }
      seg.set(len,{a[len],1});

      // a[l+len] を a[len] に置き換える

      seg.set(l+len,{a[len],1});
      {
        ok=l;
        ng=n+1;
        while(abs(ok-ng)>1){
          int mid=(ok+ng)/2;
          int len2=mid-l;
          if(seg.prod(l,mid)==seg.prod(0,len2))ok=mid;
          else ng=mid;
        }
        int len2=ok-l;

        assert(len!=len2);
        if(len2>len){
          mp[l+len][a[len]]+=len2-len;
        }
      }
      seg.set(l+len,{a[l+len],1});
    }
  }
  vll diff2(n,0);
  ll tmp0=0;
  ll tmp1=0;
  rep(i,n){
    tmp0+=X0[i]+tmp1;
    diff2[i]=tmp0;
    tmp1+=X1[i];
  }

  // assert(diff==diff2);

  vll ans(n);
  rep(i,n){
    ll mx=0;
    for(auto [key,val]:mp[i]){
      if(key!=a[i])mx=max(mx,val);
    }
    ans[i]=init_ans+diff2[i]+mx;
  }
  ll ANS=0;
  rep(i,n){
    ANS+=ans[i]^(i+1);
  }
  print(ANS);
}

int main(){
  ios::sync_with_stdio(false);
  cin.tie(nullptr);

  powB[0]=1;
  rep(i,1,201010)powB[i]=powB[i-1]*B;
  int T;
  cin>>T;
  rep(T)solve();
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 4340kb

input:

2
4
2 1 1 2
12
1 1 4 5 1 4 1 9 1 9 8 10

output:

15
217

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 28ms
memory: 4620kb

input:

10000
8
2 1 2 1 1 1 2 2
9
2 2 1 2 1 2 1 2 1
15
2 1 2 1 1 1 1 2 2 1 2 1 2 2 1
2
1 1
10
2 1 1 1 2 2 1 1 2 2
3
2 1 2
11
1 2 2 1 1 2 1 2 2 1 1
14
2 1 1 1 1 2 1 1 1 2 2 1 2 1
12
2 2 2 1 2 2 2 1 1 2 1 2
4
2 1 1 2
8
1 2 2 2 1 2 1 1
8
1 1 2 1 2 1 1 1
6
2 1 1 1 2 2
14
2 2 1 1 1 1 2 2 2 1 2 2 1 1
10
1 2 2 1 1...

output:

94
128
347
3
211
9
265
363
278
15
95
114
58
348
225
3
335
364
377
316
3
19
122
66
15
83
36
258
11
63
28
90
85
103
252
191
21
48
303
63
102
20
24
68
316
362
266
309
355
281
326
281
231
312
3
330
54
328
3
69
32
147
322
39
338
90
242
3
165
346
245
20
155
3
404
393
392
81
269
360
20
54
21
279
3
17
351
3...

result:

ok 10000 lines

Test #3:

score: 0
Accepted
time: 56ms
memory: 4360kb

input:

10000
17
1 2 2 2 2 2 2 2 1 1 2 2 1 2 1 2 2
17
2 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2
13
2 2 2 1 2 2 2 2 1 1 1 1 1
12
2 2 1 2 1 2 2 1 1 1 1 1
13
2 2 2 1 1 1 1 2 2 2 2 1 1
20
2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 1 1
13
1 2 1 2 2 2 1 2 1 2 1 1 1
20
2 1 1 2 2 1 2 2 1 1 2 1 2 2 2 2 2 1 2 2
12
2 1 2 1 1 2 2 1 2...

output:

392
434
308
252
302
895
343
867
282
249
717
194
252
350
230
427
439
279
340
384
380
292
218
312
271
810
275
211
460
388
365
342
773
203
238
857
720
497
514
443
618
777
372
242
337
232
324
837
289
480
366
681
358
281
320
529
451
309
250
326
315
744
307
841
133
214
411
788
332
365
488
157
760
278
421
...

result:

ok 10000 lines

Test #4:

score: 0
Accepted
time: 55ms
memory: 4368kb

input:

10000
10
3 3 1 2 2 3 3 3 2 3
13
1 2 1 2 1 1 3 1 2 2 1 3 1
14
1 2 1 2 3 3 2 3 1 2 2 2 3 3
10
1 1 1 1 1 1 3 2 1 2
19
1 3 3 3 1 3 3 2 1 1 1 3 2 2 1 2 1 3 2
12
1 3 1 3 1 1 3 2 3 3 2 3
11
1 1 1 2 2 3 1 1 3 1 1
12
3 2 2 1 3 3 2 1 1 3 3 2
11
2 2 3 2 3 1 3 1 2 1 1
20
3 1 2 2 3 1 3 3 1 3 3 2 3 3 3 2 3 1 1 2
...

output:

191
285
325
207
420
281
215
280
151
754
365
199
94
418
318
377
414
285
373
362
111
358
332
117
185
326
89
404
229
386
307
285
421
232
321
329
506
372
386
364
153
582
313
356
152
129
424
366
382
280
363
370
273
294
388
389
807
388
459
280
114
310
211
368
150
166
793
211
793
393
102
427
399
408
584
38...

result:

ok 10000 lines

Test #5:

score: 0
Accepted
time: 56ms
memory: 4428kb

input:

10000
14
9 9 13 6 3 8 7 10 5 9 14 2 12 5
15
9 12 2 2 8 4 2 11 4 4 8 3 8 13 15
19
5 7 1 2 9 2 16 9 15 8 19 9 3 18 8 8 1 12 6
14
9 8 2 11 7 2 12 5 14 14 10 5 7 2
11
4 4 2 9 9 11 10 3 3 2 2
14
8 2 9 10 10 11 6 9 12 5 5 4 9 2
20
4 5 3 13 15 18 12 6 2 8 11 12 6 10 14 14 10 14 13 12
14
11 9 7 5 12 12 5 3 ...

output:

307
362
380
107
97
137
380
108
135
299
312
265
99
362
379
361
332
380
129
367
97
380
97
107
363
107
132
367
97
88
363
314
100
382
354
349
383
95
359
306
340
133
382
106
395
361
374
105
292
385
360
359
365
381
378
107
374
111
357
105
365
319
379
102
364
89
107
374
128
101
360
115
363
107
106
116
92
3...

result:

ok 10000 lines

Test #6:

score: 0
Accepted
time: 184ms
memory: 4448kb

input:

1331
128
1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 2 2 1 2 1 2 2 2 2 2 1 2 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 2 2 2 1 2 1 2 1 2 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 2 2 2 1 2 1 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 2 2 2 2
115
1 2 2 1 2 2 1 2 2 1 2 1 2 2 2 1...

output:

41073
22779
19964
77764
77960
62759
68522
21651
24781
42049
74437
19840
74378
68878
20605
34809
20231
20004
50820
29156
52217
53156
23540
67367
57400
46500
19870
60423
66032
51371
59540
51300
48277
22751
77712
65779
21946
37124
65635
40091
27911
55656
54005
18564
25013
64077
46260
21753
62329
69899
...

result:

ok 1331 lines

Test #7:

score: 0
Accepted
time: 350ms
memory: 4636kb

input:

131
1471
2 3 2 3 1 2 2 1 1 1 1 2 1 3 2 1 1 1 2 2 2 2 2 2 3 1 3 2 1 2 3 2 3 1 3 1 2 1 3 1 3 1 3 2 2 1 3 3 3 1 1 1 3 2 2 2 1 2 1 3 1 3 3 1 2 2 1 2 3 1 3 1 3 3 2 1 3 3 2 3 2 2 2 1 3 2 1 2 2 1 3 1 1 3 2 3 1 1 2 1 2 3 2 1 3 3 2 2 2 2 1 1 1 2 3 1 1 3 3 2 3 2 1 3 1 3 3 2 2 1 2 1 1 2 1 3 2 1 2 2 3 2 2 1 1 3...

output:

4103972
1822893
4056671
4581950
1797128
5452459
5578024
6135700
4325429
1769997
1239977
1589696
5346072
1818448
5380837
3882106
3814365
1823901
4911982
5946018
5208392
4261893
1767953
5781183
4624024
1795249
1600563
1677098
4679442
4113663
1685240
1576241
5128042
1618422
4440641
4326472
5703872
3748...

result:

ok 131 lines

Test #8:

score: 0
Accepted
time: 348ms
memory: 4600kb

input:

131
1104
15 10 15 18 8 16 25 26 11 19 4 5 9 15 20 8 8 1 5 12 6 15 15 9 19 6 20 8 9 10 12 1 7 26 9 15 26 14 18 24 25 4 9 20 16 18 25 10 8 2 15 14 26 19 22 17 8 7 23 19 22 26 23 4 26 8 16 6 19 5 17 4 9 25 7 14 19 26 9 21 23 7 20 2 12 22 23 24 20 11 23 23 7 13 6 26 25 10 8 17 23 15 14 20 16 7 21 8 11 1...

output:

1585911
1671116
2074604
2071604
2066710
1571959
1699180
1597972
1573443
2062834
1968749
1670339
1696389
1700722
1574014
1673122
6093159
1965764
1966052
2084891
1597710
1989656
2054890
1659456
1601397
1982947
1675608
2075393
1694022
1992153
6012239
1675824
1987812
1589514
2063346
1986943
1571712
1671...

result:

ok 131 lines

Test #9:

score: 0
Accepted
time: 587ms
memory: 8696kb

input:

14
554
232 178 169 417 93 38 93 537 212 211 313 227 432 269 475 489 459 286 318 534 118 160 223 534 275 382 482 331 3 279 73 513 403 277 34 497 462 397 280 218 395 498 201 548 8 520 495 397 545 528 401 58 418 3 494 260 251 496 212 552 243 151 78 385 441 73 271 337 283 39 162 1 501 357 126 452 416 34...

output:

394027
127388087
408947528
132597056
403149770
403022905
410881136
404226176
134192573
106965642
108543004
108541542
109002658
408924618

result:

ok 14 lines

Test #10:

score: 0
Accepted
time: 937ms
memory: 47912kb

input:

1
200000
86045 57533 29508 181370 17680 186294 134595 82393 109229 189798 133533 194579 11412 112604 572 32659 76824 177596 106427 60375 98302 93821 34541 125615 108609 22507 166292 195457 151376 54630 166314 85832 192590 85410 149595 46737 54738 198246 56457 189628 135013 63949 28359 65601 162502 4...

output:

32219923494

result:

ok single line: '32219923494'

Test #11:

score: 0
Accepted
time: 559ms
memory: 7444kb

input:

14
11651
1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 1 2...

output:

638847269
762853260
1772624286
1459420676
912238973
902965748
1461240613
1591772671
978996498
1450864204
913255377
276655999
898402422
1129219843

result:

ok 14 lines

Test #12:

score: 0
Accepted
time: 847ms
memory: 38248kb

input:

1
200000
1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 1 2...

output:

241162217617

result:

ok single line: '241162217617'

Test #13:

score: 0
Accepted
time: 851ms
memory: 40076kb

input:

1
200000
1 2 3 2 3 1 3 1 2 2 3 1 3 1 2 1 2 3 3 1 2 1 2 3 2 3 1 2 3 1 3 1 2 1 2 3 3 1 2 1 2 3 2 3 1 1 2 3 2 3 1 3 1 2 3 1 2 1 2 3 2 3 1 1 2 3 2 3 1 3 1 2 2 3 1 3 1 2 1 2 3 2 3 1 3 1 2 1 2 3 3 1 2 1 2 3 2 3 1 1 2 3 2 3 1 3 1 2 3 1 2 1 2 3 2 3 1 1 2 3 2 3 1 3 1 2 2 3 1 3 1 2 1 2 3 1 2 3 2 3 1 3 1 2 2 3...

output:

179830061352

result:

ok single line: '179830061352'

Test #14:

score: 0
Accepted
time: 811ms
memory: 28196kb

input:

2
147441
101973 109734 101973 101973 109734 101973 109734 101973 101973 109734 101973 101973 109734 101973 109734 101973 101973 109734 101973 109734 101973 101973 109734 101973 101973 109734 101973 109734 101973 101973 109734 101973 101973 109734 101973 109734 101973 101973 109734 101973 109734 1019...

output:

319151712710
36323502547

result:

ok 2 lines

Test #15:

score: 0
Accepted
time: 869ms
memory: 35324kb

input:

1
200000
90579 86359 90579 90579 86359 90579 86359 90579 90579 86359 90579 90579 86359 90579 86359 90579 90579 86359 90579 86359 90579 90579 86359 90579 90579 86359 90579 86359 90579 90579 86359 90579 90579 86359 90579 86359 90579 90579 86359 90579 86359 90579 90579 86359 90579 90579 86359 90579 863...

output:

605969434886

result:

ok single line: '605969434886'

Test #16:

score: 0
Accepted
time: 842ms
memory: 35612kb

input:

1
200000
1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1...

output:

142983226845641

result:

ok single line: '142983226845641'

Test #17:

score: 0
Accepted
time: 768ms
memory: 35808kb

input:

1
200000
1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2...

output:

666704973725917

result:

ok single line: '666704973725917'

Test #18:

score: 0
Accepted
time: 708ms
memory: 33860kb

input:

1
200000
24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 ...

output:

1000022503780497

result:

ok single line: '1000022503780497'

Test #19:

score: 0
Accepted
time: 553ms
memory: 7796kb

input:

15
13418
7463 7463 7463 7463 9685 7463 1028 1028 9685 7463 9685 9685 7463 9685 7463 9685 9685 7463 7463 9685 7463 7463 7463 9685 7606 9685 1028 1028 9685 9685 9685 7463 1028 9685 9685 9685 9685 7463 3766 3766 7463 9685 9685 7132 7132 9685 1028 7463 3766 1028 7463 1028 9685 9685 1028 3766 9685 9685 3...

output:

310854214
1449822
411519250
114103279
422847646
111080594
345051865
115761752
373321070
416817676
270343906
133687081
436456350
116337980
244991146

result:

ok 15 lines

Test #20:

score: 0
Accepted
time: 582ms
memory: 7944kb

input:

13
14791
2035 8168 8168 2035 2035 2035 8168 2035 2035 8168 2035 2035 2035 2035 2035 2035 2035 2035 2035 8168 2035 2035 2035 2035 2035 2035 2035 2035 2035 8168 2035 2035 2035 2035 2035 2035 2035 2035 2035 8168 2035 2035 8168 2035 2812 2035 8168 2035 8168 2035 8168 2035 2035 8168 8168 9546 2035 2035 2...

output:

371530128
851134952
1442447610
1086437389
1314950262
1069313993
1418963743
58759634
413581446
389752815
405059048
222613748
292855398

result:

ok 13 lines

Test #21:

score: 0
Accepted
time: 616ms
memory: 7248kb

input:

15
12956
1461 1461 1461 1461 1461 1461 12553 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 12553 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 1461 12553 1461 1461 146...

output:

949186410
1955289437
1313255408
642243147
6111494
1702549476
1650717366
1049298027
1087170445
1259299037
3413417858
1529936217
776579634
1552800994
1881266475

result:

ok 15 lines

Test #22:

score: 0
Accepted
time: 653ms
memory: 7320kb

input:

15
14395
12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 13111 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 12206 122...

output:

2957212969
1012208565
4531357191
3436243590
1743046033
9523735
500043796
2288646068
1429987616
2528370581
2183643497
375636659
2556639949
4614333790
7205785399

result:

ok 15 lines

Test #23:

score: 0
Accepted
time: 854ms
memory: 38676kb

input:

1
200000
70309 96346 70309 70309 70309 92160 96346 70309 70309 96346 92160 70309 171045 70309 96346 96346 92160 96346 96346 190333 190333 70309 96346 127508 96346 92160 92160 70309 70309 70309 70309 92160 92160 70309 70309 70309 70309 127508 70309 92160 92160 70309 70309 70309 125471 96346 127508 12...

output:

118752316928

result:

ok single line: '118752316928'

Test #24:

score: 0
Accepted
time: 889ms
memory: 32032kb

input:

1
200000
94840 94840 94840 94840 94840 94840 94840 94840 61989 61989 94840 94840 94840 94840 94840 94840 94840 61989 61989 61989 94840 94840 94840 61989 94840 94840 137895 94840 94840 137895 94840 61989 94840 94840 94840 94840 137895 94840 94840 94840 94840 94840 94840 61989 94840 61989 94840 94840 ...

output:

181441989888

result:

ok single line: '181441989888'

Test #25:

score: 0
Accepted
time: 928ms
memory: 30776kb

input:

1
200000
127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 106778 127581 127581 126279 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 127581 106778 127581 127581 127581 127581 127581 127581 127581 1275...

output:

342833548104

result:

ok single line: '342833548104'

Test #26:

score: -100
Time Limit Exceeded

input:

1
200000
108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 108121 1081...

output:


result: