QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#696494 | #6402. MEXimum Spanning Tree | NTT | TL | 1ms | 3632kb | C++23 | 6.7kb | 2024-10-31 22:55:01 | 2024-10-31 22:55:02 |
Judging History
answer
//verification of Huang, Chien-Chung; Kakimura, Naonori; Kamiyama, Naoyuki (2019-09-01). "Exact and approximation algorithms for weighted matroid intersection". Mathematical Programming. 177 (1): 85–112. doi:10.1007/s10107-018-1260-x. hdl:2324/1474903. ISSN 1436-4646. S2CID 254138118.
//based on https://qoj.ac/submission/548815
#include <bits/stdc++.h>
// #include"C:/code/deb_20.cpp"
using ll = long long;
using i128=__int128;
using ld = long double;
#define int ll
template<typename T>using V=std::vector<T>;
using vi=V<int>;
using vvi=V<vi>;
using namespace std;
constexpr ll M=ll(1e18)+9;
#define len(a) int((a).size())
#define all(a) begin(a), end(a)
#define rep(i, n) for (int i = 0; i < (n); i++)
template<typename T, typename A, typename B>
vector<T> matroid_intersection(const vector<T>& ground_set, const A& matroid1, const B& matroid2) {
int n = ground_set.size();
vector<char> in_set(n), in_matroid1(n), in_matroid2(n);
vector<bool> used(n);
vector<int> par(n), left, right;
left.reserve(n);
right.reserve(n);
while (true) {
A m1 = matroid1;
B m2 = matroid2;
left.clear();
right.clear();
for (int i = 0; i < n; i++) {
if (in_set[i]) {
m1.add(ground_set[i]);
m2.add(ground_set[i]);
left.push_back(i);
} else {
right.push_back(i);
}
}
fill(all(in_matroid1), 0);
fill(all(in_matroid2), 0);
bool found = false;
for (int i : right) {
in_matroid1[i] = m1.independed_with(ground_set[i]);
in_matroid2[i] = m2.independed_with(ground_set[i]);
if (in_matroid1[i] && in_matroid2[i]) {
in_set[i] = 1;
found = true;
break;
}
}
if (found) {
continue;
}
fill(all(used), false);
fill(all(par), -1);
queue<int> que;
for (int i : right) {
if (in_matroid1[i]) {
used[i] = true;
que.push(i);
}
}
while (!que.empty() && !found) {
int v = que.front();
que.pop();
if (in_set[v]) {
A m = matroid1;
for (auto i : left) {
if (i != v) {
m.add(ground_set[i]);
}
}
for (auto u : right) {
if (!used[u] && m.independed_with(ground_set[u])) {
par[u] = v;
used[u] = true;
que.push(u);
if (in_matroid2[u]) {
found = true;
for (; u != -1; u = par[u]) {
in_set[u] ^= 1;
}
break;
}
}
}
} else {
B m = m2;
m.add_extra(ground_set[v]);
for (auto u : left) {
if (!used[u] && m.independed_without(ground_set[u])) {
par[u] = v;
used[u] = true;
que.push(u);
}
}
}
}
if (!found) {
break;
}
}
vector<T> res;
for (int i = 0; i < n; i++) {
if (in_set[i]) {
res.push_back(ground_set[i]);
}
}
return res;
}
struct item {
int v, u, w;
};
struct colorful_matroid {
vector<int> cnt;
int cnt_bad = 0;
colorful_matroid(int n) : cnt(n + 1) {}
void add(const item& item) {
auto x = item.w;
assert(cnt[x] == 0);
cnt[x]++;
}
bool independed_with(const item& item) const {
auto x = item.w;
return cnt[x] == 0;
}
void add_extra(const item& item) {
auto x = item.w;
cnt_bad += cnt[x] == 1;
cnt[x]++;
}
bool independed_without(const item& item) const {
auto x = item.w;
return cnt_bad == 0 || cnt[x] == 2;
}
};
struct graph_matroid {
vector<int> par;
graph_matroid(int n) : par(n) {
iota(all(par), 0);
}
int root(int v) {
return par[v] == v ? v : par[v] = root(par[v]);
}
bool independed_with(const item& item) {
int v = item.v, u = item.u;
return root(v) != root(u);
}
void add(const item& item) {
int v = item.v, u = item.u;
assert(root(v) != root(u));
par[root(v)] = root(u);
}
};
vi&operator+=(vi&a,const vi&b){for(int i=0;i<ssize(a);++i)(a[i]+=b[i])%=M;return a;}
vi&operator*=(vi&a,const ll&b){for(auto&&x:a)x=x*i128(b)%M;return a;}
#define GEN_OP(op) auto operator op(auto a,const auto&b){return a op##= b;}
GEN_OP(+)
GEN_OP(*)
// struct Matrix:vvi{
//
// };
ll qpow(i128 a,auto b){ll res=1;for(;b;a=a*a%M,b>>=1)if(b&1)res=res*a%M;return res;}
using Matrix=vvi;
int rnk(Matrix a){
int n=ssize(a),m=ssize(a[0]),i=0,j=0;
for(;i<n&&j<m;++j){
int r=i;
for(;r<n;++r)if(a[r][j])break;
if(r<n&&a[r][j]){
if(r!=i)std::swap(a[r],a[i]);
for(int l=i+1;l<n;++l){
i128 fct=i128(M-a[l][j])*qpow(a[i][j],M-2);
a[l]+=a[i]*fct;
}
++i;
}
}
return i;
}
mt19937_64 rng(19260817);
auto rnd(auto a,auto b){return std::uniform_int_distribution(a,b)(rng);}
signed main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n, m;
cin >> n >> m;
vector<item> st(m);
for (int i = 0; i < m; i++) {
cin >> st[i].v >> st[i].u >> st[i].w;
st[i].v--, st[i].u--;
}
auto possible = [&](int mex) {
// if constexpr(false){
vector<item> cur_st;
for (auto item : st) {
if (item.w < mex) {
cur_st.push_back(item);
}
}
colorful_matroid cm(n);
graph_matroid g(n);
auto resoid=len(matroid_intersection(cur_st, g, cm));
// }else{
vvi ma(n+m,vi(mex+m));
for(int i=0;i<m;++i)if(st[i].w<mex){
ma[n+i][mex+i]=rnd(1ll,M-1);
auto x=rnd(1ll,M-1);
ma[st[i].v][mex+i]=+x;
ma[st[i].u][mex+i]=M-x;
ma[n+i][st[i].w]=1;
}
auto resix=rnk(ma);
// }
// debug(mex,resoid,resix);
return resix>=mex*2;
};
int lb = 0, rb = n + 1;
while (rb - lb > 1) {
int mid = (lb + rb) / 2;
(possible(mid) ? lb : rb) = mid;
}
cout << lb << '\n';
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3632kb
input:
4 4 1 2 0 2 3 1 1 3 1 3 4 2
output:
3
result:
ok 1 number(s): "3"
Test #2:
score: -100
Time Limit Exceeded
input:
1000 1000 647 790 6 91 461 435 90 72 74 403 81 240 893 925 395 817 345 136 88 71 821 831 962 53 164 270 298 14 550 317 99 580 81 26 477 488 977 474 861 413 483 167 872 675 17 819 327 449 594 242 68 381 983 319 867 582 358 869 225 669 274 352 392 40 388 998 246 477 44 508 979 286 483 776 71 580 438 6...