QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#692780 | #6132. Repair the Artwork | OIer_kzc | TL | 3ms | 4596kb | C++17 | 3.0kb | 2024-10-31 15:01:50 | 2024-10-31 15:01:51 |
Judging History
answer
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <vector>
#include <algorithm>
#define eb emplace_back
#define LOG(FMT...) fprintf(stderr, FMT)
using namespace std;
typedef long long LL;
constexpr int N = 105, mod = (int)1e9 + 7;
constexpr int reduce(int x) {
return x >= mod ? x - mod : x;
}
constexpr int neg(int x) {
return x ? mod - x : 0;
}
void Add(int &x, int y) {
if ((x += y) >= mod) {
x -= mod;
}
}
constexpr int inv(int x, int k = mod - 2) {
int r = 1;
while (k) {
if (k & 1) {
r = x * (LL)r % mod;
}
x = x * (LL)x % mod;
k >>= 1;
}
return r;
}
struct Pair {
int x, y;
Pair() {}
Pair(int _x, int _y) : x(_x), y(_y) {}
bool operator < (const Pair &t) const {
return y < t.y;
}
};
struct Poly {
vector<Pair> v;
Poly() : v{Pair(1, 0)} {}
Poly(int k) : v{Pair(1, k * (k + 1) / 2)} {}
Poly(vector<Pair> &t) : v(t) {}
Pair &operator[] (int k) {
return v[k];
}
Pair operator[] (int k) const {
return v[k];
}
int size() const {
return (int)v.size();
}
Poly operator * (const Poly &t) const {
vector<Pair> ret;
for (int i = 0; i < v.size(); ++i) {
for (int j = 0; j < t.size(); ++j) {
ret.eb(v[i].x * (LL)t[j].x % mod, reduce(v[i].y + t[j].y));
}
}
return ret;
}
Poly operator - (const Poly &t) const {
vector<Pair> ret(v.size() + t.size());
for (int i = 0; i < v.size(); ++i) {
ret[i] = v[i];
}
for (int i = 0; i < t.size(); ++i) {
auto &[x, y] = ret[i + v.size()];
x = neg(t[i].x), y = t[i].y;
}
sort(ret.begin(), ret.end());
int k = 0;
for (int i = 0, j; (j = i) < ret.size(); i = j) {
int coef = 0;
while (j < ret.size() && ret[i].y == ret[j].y) {
Add(coef, ret[j].x);
++j;
}
ret[k++] = Pair(coef, ret[i].y);
}
ret.erase(ret.begin() + k, ret.end());
return ret;
}
int val(int k) const {
int ret = 0;
for (const auto &[x, y] : v) {
ret = (ret + x * (LL)inv(y, k)) % mod;
}
return ret;
}
};
int a[N], n, m;
bool was[N][N];
Poly f[N][N];
Poly dp(int l, int r) {
if (l == r + 1) {
return Poly();
}
if (was[l][r]) {
return f[l][r];
}
was[l][r] = true;
Poly &ret = f[l][r];
ret = Poly(r - l + 1);
for (int k = l; k <= r; ++k) {
if (a[k] == 1) {
LOG("ERR\n");
while (true);
}
if (a[k] == 2) {
ret = ret - dp(l, k - 1) * Poly(r - k);
}
}
return ret;
}
void solve() {
memset(was, 0, sizeof was);
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
Poly ret;
for (int i = 1, j; (j = i) <= n; i = j + 1) {
while (j <= n && a[j] != 1) {
j += 1;
}
if (a[i] != 1) {
ret = ret * dp(i, j - 1);
}
}
int res = ret.val(m);
/* LOG("%d\n", ret.size());
for (auto [x, y] : ret.v) LOG("%d %d\n", x, y); */
/* for (int i = 1; i <= m; ++i) {
res = res * (LL)i % mod;
} */
printf("%d\n", res);
}
int main() {
int task;
for (scanf("%d", &task); task--; ) {
solve();
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 4416kb
input:
3 2 2 2 0 3 2 2 1 0 3 1 2 1 0
output:
8 3 1
result:
ok 3 number(s): "8 3 1"
Test #2:
score: 0
Accepted
time: 3ms
memory: 4596kb
input:
100 2 1 0 1 2 1 2 1 2 1 1 1 1 6 2 1 14 2 3 12 2 2 2 6 13 2 2 0 2 0 2 7 14 0 0 0 0 2 2 0 5 8 2 2 0 0 0 5 5 2 2 0 0 0 12 3 0 2 0 2 2 0 1 2 2 2 2 0 7 11 2 2 0 1 0 1 0 4 4 2 1 2 2 7 5 1 1 0 0 1 0 0 2 14 2 1 15 17 2 2 1 2 0 0 0 0 2 0 1 0 0 0 0 15 11 1 1 2 0 1 2 0 0 1 0 2 1 1 1 1 15 18 1 0 1 0 2 2 1 2 0 1...
output:
1 1 0 1 1 175715347 833406719 467966815 458805426 650344 2208 537089254 146 7776 1 703335050 123067364 355668256 487954758 53774922 544070885 436748805 369291507 760487845 513270785 501075264 487417783 464534262 979007529 137956839 143317512 648268264 851188473 702545117 946416372 595191705 35054850...
result:
ok 100 numbers
Test #3:
score: -100
Time Limit Exceeded
input:
1000 20 673037423 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 774964932 2 2 2 17 730319736 2 2 1 1 2 2 2 2 2 2 2 2 2 1 2 2 1 11 893285699 2 2 2 1 2 1 2 2 2 1 2 16 98149251 1 2 1 2 1 2 1 1 2 1 2 2 2 2 1 2 7 556953277 1 2 2 1 2 2 2 3 228111342 1 1 1 11 640995044 2 2 1 1 2 2 1 1 1 1 1 19 741419324 1 1 2 ...