QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#691648 | #6137. Sub-cycle Graph | A_Quark# | AC ✓ | 136ms | 5004kb | C++20 | 1.3kb | 2024-10-31 12:27:09 | 2024-10-31 12:27:10 |
Judging History
answer
#include<bits/stdc++.h>
#define i64 long long
using namespace std;
inline i64 rd()
{
i64 num=0;char ch=getchar();bool op=0;
for(;!isdigit(ch);ch=getchar())if(ch=='-')op=1;
for(;isdigit(ch);ch=getchar())num=num*10+(ch-'0');
return op?-num:num;
}
const int mod=1000000007;
inline int Mod(int x){return x>=mod?x-mod:x;}
inline void Add(int&x,int v){x+=v;if(x>=mod)x-=mod;}
inline i64 qpow(i64 val,int p=mod-2)
{
i64 res=1;
while(p)
{
if(p&1)res=res*val%mod;
val=val*val%mod;p>>=1;
}
return res;
}
const int N=1e5+10;
int fac[N],ifac[N];
int ipw[N];
inline void predone(int n=1e5+5)
{
int ibase=qpow(2);
ipw[0]=1;
for(int i=1;i<=n;i++)ipw[i]=1ll*ipw[i-1]*ibase%mod;
fac[0]=1;
for(int i=1;i<=n;i++)fac[i]=1ll*fac[i-1]*i%mod;
ifac[n]=qpow(fac[n]);
for(int i=n;i>=1;i--)ifac[i-1]=1ll*ifac[i]*i%mod;
}
inline int C(int n,int m){return n<m||m<0?0:1ll*fac[n]*ifac[m]%mod*ifac[n-m]%mod;}
inline void work()
{
int n=rd();i64 m=rd();
if(n< m){printf("0\n");return;}
if(n==m){printf("%lld\n",1ll*fac[n-1]*qpow(2)%mod);return;}
if(0==m){printf("1\n");return;}
m=n-m;int Ans=0;
for(int i=1;i<=m;i++)
Add(Ans,1ll*C(n,m-i)*fac[n-(m-i)]%mod*C(n-(m-i)-i-1,i-1)%mod*ipw[i]%mod*ifac[i]%mod);
printf("%d\n",Ans);
}
int main()
{
predone();
for(int test=rd();test;test--)work();
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 2ms
memory: 5004kb
input:
3 4 2 4 3 5 3
output:
15 12 90
result:
ok 3 number(s): "15 12 90"
Test #2:
score: 0
Accepted
time: 136ms
memory: 4948kb
input:
17446 3 0 3 1 3 2 3 3 4 0 4 1 4 2 4 3 4 4 5 0 5 1 5 2 5 3 5 4 5 5 6 0 6 1 6 2 6 3 6 4 6 5 6 6 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 11 0 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11...
output:
1 3 3 1 1 6 15 12 3 1 10 45 90 60 12 1 15 105 375 630 360 60 1 21 210 1155 3465 5040 2520 360 1 28 378 2940 13545 35280 45360 20160 2520 1 36 630 6552 42525 170100 393120 453600 181440 20160 1 45 990 13230 114345 643545 2286900 4762800 4989600 1814400 181440 1 55 1485 24750 273735 2047815 10239075 3...
result:
ok 17446 numbers