QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#691507 | #6137. Sub-cycle Graph | OIer_kzc# | AC ✓ | 132ms | 2384kb | C++17 | 1.3kb | 2024-10-31 11:44:25 | 2024-10-31 11:44:25 |
Judging History
answer
#include <stdio.h>
#include <string.h>
#include <vector>
#include <algorithm>
#define eb emplace_back
#define LOG(FMT...) fprintf(stderr, FMT)
using namespace std;
typedef long long LL;
constexpr int N = 100005, mod = 1e9 + 7, inv2 = (mod + 1) / 2;
constexpr int inv(int x, int k = mod - 2) {
int r = 1;
while (k) {
if (k & 1) {
r = x * (LL)r % mod;
}
x = x * (LL)x % mod;
k >>= 1;
}
return r;
}
int fact[N], infact[N];
void pref() {
constexpr int n = N - 1;
*fact = 1;
for (int i = 1; i <= n; ++i) {
fact[i] = fact[i - 1] * (LL)i % mod;
}
infact[n] = inv(fact[n]);
for (int i = n; i; --i) {
infact[i - 1] = infact[i] * (LL)i % mod;
}
}
int C(int x, int y) {
return y < 0 || x < y ? 0 : fact[x] * (LL)infact[y] % mod * infact[x - y] % mod;
}
int solve() {
int n; LL m;
scanf("%d%lld", &n, &m);
if (m > n) return 0;
if (m == n) return fact[n - 1] * (LL)inv2 % mod;
m = n - m;
constexpr int w = mod - inv2;
int r = 1, s = 0;
for (int k = 0; k <= m; ++k) {
s = (s + C(n - k - 1, m - 1) * (LL)C(m, k) % mod * r) % mod;
r = r * (LL)w % mod;
}
s = s * (LL)fact[n] % mod * infact[m] % mod;
return s;
}
int main() {
pref();
int task;
for (scanf("%d", &task); task--; ) {
printf("%d\n", solve());
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 2360kb
input:
3 4 2 4 3 5 3
output:
15 12 90
result:
ok 3 number(s): "15 12 90"
Test #2:
score: 0
Accepted
time: 132ms
memory: 2384kb
input:
17446 3 0 3 1 3 2 3 3 4 0 4 1 4 2 4 3 4 4 5 0 5 1 5 2 5 3 5 4 5 5 6 0 6 1 6 2 6 3 6 4 6 5 6 6 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 9 0 9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 11 0 11 1 11 2 11 3 11 4 11 5 11 6 11 7 11...
output:
1 3 3 1 1 6 15 12 3 1 10 45 90 60 12 1 15 105 375 630 360 60 1 21 210 1155 3465 5040 2520 360 1 28 378 2940 13545 35280 45360 20160 2520 1 36 630 6552 42525 170100 393120 453600 181440 20160 1 45 990 13230 114345 643545 2286900 4762800 4989600 1814400 181440 1 55 1485 24750 273735 2047815 10239075 3...
result:
ok 17446 numbers