QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#688854 | #1268. Diamond Rush | wzj33300 | AC ✓ | 1298ms | 156436kb | C++23 | 8.2kb | 2024-10-30 13:57:37 | 2024-10-30 13:57:37 |
Judging History
answer
/**
* created : 30.10.2024 12:36:13
* author : wzj33300
*/
#include <bits/stdc++.h>
using namespace std;
#ifdef DEBUG
#include <algo/debug.h>
#else
#define debug(...) 42
#define assert(...) 42
#endif
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using db = long double; // or double, if TL is tight
using str = string; // yay python!
// pairs
using pi = pair<int, int>;
using pl = pair<ll, ll>;
using pd = pair<db, db>;
#define mp make_pair
#define fi first
#define se second
// ^ lol this makes everything look weird but I'll try it
template <class T>
using vc = vector<T>;
template <class T, size_t SZ>
using AR = array<T, SZ>;
using vi = vc<int>;
using vb = vc<bool>;
using vl = vc<ll>;
using vd = vc<db>;
using vs = vc<str>;
using vpi = vc<pi>;
using vpl = vc<pl>;
using vpd = vc<pd>;
// vectors
// oops size(x), rbegin(x), rend(x) need C++17
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define pb push_back
#define eb emplace_back
#define ft front()
#define bk back()
#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep1(i, n) for (int i = 1; i < (n); ++i)
#define rep1n(i, n) for (int i = 1; i <= (n); ++i)
#define repr(i, n) for (int i = (n) - 1; i >= 0; --i)
#define rep_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define lb lower_bound
#define ub upper_bound
template <class T>
int lwb(vc<T> &a, const T &b) {
return int(lb(all(a), b) - bg(a));
}
template <class T>
int upb(vc<T> &a, const T &b) {
return int(ub(all(a), b) - bg(a));
}
// const int MOD = 998244353; // 1e9+7;
const int Big = 1e9; // not too close to INT_MAX
const ll BIG = 1e18; // not too close to LLONG_MAX
const db PI = acos((db)-1);
const int dx[4]{1, 0, -1, 0}, dy[4]{0, 1, 0, -1}; // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
int pct(int x) { return __builtin_popcount(x); }
int pct(u32 x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int pct(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <class T>
bool ckmin(T &a, const T &b) {
return b < a ? a = b, 1 : 0;
} // set a = min(a,b)
template <class T>
bool ckmax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
} // set a = max(a,b)
template <class T, class U>
T fstTrue(T lo, T hi, U f) {
++hi;
assert(lo <= hi); // assuming f is increasing
while (lo < hi) { // find first index such that f is true
T mid = lo + (hi - lo) / 2;
f(mid) ? hi = mid : lo = mid + 1;
}
return lo;
}
template <class T, class U>
T lstTrue(T lo, T hi, U f) {
--lo;
assert(lo <= hi); // assuming f is decreasing
while (lo < hi) { // find first index such that f is true
T mid = lo + (hi - lo + 1) / 2;
f(mid) ? lo = mid : hi = mid - 1;
}
return lo;
}
int mod1, mod2;
int pw1[400 * 400 + 1], pw2[400 * 400 + 1];
struct Hash {
int x1 = 0, x2 = 0;
friend Hash &operator+=(Hash &me, int x) {
me.x1 += pw1[x];
me.x1 %= mod1;
me.x2 += pw2[x];
me.x2 %= mod2;
return me;
}
friend Hash operator+(const Hash &x, const Hash &y) {
return Hash{(x.x1 + y.x1) % mod1, (x.x2 + y.x2) % mod2};
}
friend bool operator!=(const Hash &x, const Hash &y) {
return x.x1 != y.x1 || x.x2 != y.x2;
}
};
const int N = 400 * 400 * 20 * 2,
mod = 1e9 + 7;
int ls[N], rs[N], cnt, val[N], pw[400 * 400 + 1], c[N];
Hash sum[N];
void update(int &rt, int l, int r, int x) {
++cnt;
ls[cnt] = ls[rt], rs[cnt] = rs[rt], sum[cnt] = sum[rt], val[cnt] = val[rt], c[cnt] = c[rt];
rt = cnt;
c[rt]++;
val[rt] += pw[x];
val[rt] %= mod;
sum[rt] += x;
if (l == r) {
return;
}
int mid = l + r >> 1;
if (x <= mid)
update(ls[rt], l, mid, x);
else
update(rs[rt], mid + 1, r, x);
}
bool cmp(int x, int y, int l, int r) {
if (l == r) return c[x] > c[y];
int mid = l + r >> 1;
if (sum[rs[x]] != sum[rs[y]])
return cmp(rs[x], rs[y], mid + 1, r);
else
return cmp(ls[x], ls[y], l, mid);
}
using P = pair<int, int>;
P LS(P x) {
return P{ls[x.fi], ls[x.se]};
}
P RS(P x) {
return P{rs[x.fi], rs[x.se]};
}
Hash SUM(P x) {
return sum[x.fi] + sum[x.se];
}
int VAL(P x) {
return (val[x.fi] + val[x.se]) % mod;
}
int C(P x) {
return c[x.fi] + c[x.se];
}
bool cmp(P x, P y, int l, int r) {
if (l == r) return C(x) > C(y);
int mid = l + r >> 1;
if (SUM(RS(x)) != SUM(RS(y)))
return cmp(RS(x), RS(y), mid + 1, r);
else
return cmp(LS(x), LS(y), l, mid);
}
void _sol() {
int n, m;
cin >> n >> m;
pw[0] = 1;
for (int i = 1; i <= n * n; i++) {
pw[i] = 1ll * pw[i - 1] * n * n % mod;
}
vc<vi> a(n, vi(n));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
cin >> a[i][j];
vc<vc<int>> f(n, vc<int>(n));
cnt = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
if (i == 0 && j == 0) {
} else if (i == 0)
f[i][j] = f[i][j - 1];
else if (j == 0)
f[i][j] = f[i - 1][j];
else
f[i][j] = cmp(f[i - 1][j], f[i][j - 1], 1, n * n) ? f[i - 1][j] : f[i][j - 1];
update(f[i][j], 1, n * n, a[i][j]);
// debug(val[f[i][j]]);
}
vc<vc<int>> g(n, vc<int>(n));
vc<vc<P>> pre(n, vc<P>(n)), suf(pre);
repr(i, n) repr(j, n) {
if (i == n - 1 && j == n - 1) {
} else if (i == n - 1)
g[i][j] = g[i][j + 1];
else if (j == n - 1)
g[i][j] = g[i + 1][j];
else
g[i][j] = cmp(g[i + 1][j], g[i][j + 1], 1, n * n) ? g[i + 1][j] : g[i][j + 1];
pre[i][j] = suf[i][j] = P{f[i][j], g[i][j]};
update(g[i][j], 1, n * n, a[i][j]);
}
// debug(f, g);
for (int i = 0; i < n; i++) {
for (int j = 1; j < n; j++) {
pre[i][j] = cmp(pre[i][j], pre[i][j - 1], 1, n * n) ? pre[i][j] : pre[i][j - 1];
}
for (int j = n - 2; j >= 0; j--) {
suf[i][j] = cmp(suf[i][j], suf[i][j + 1], 1, n * n) ? suf[i][j] : suf[i][j + 1];
}
}
while (m--) {
int x1, x2, y1, y2;
cin >> x1 >> x2 >> y1 >> y2;
--x1, --x2, --y1, --y2;
P ans{0, 0};
// (x2, y1)
if (x2 < n - 1 && y1 > 0) {
ans = cmp(ans, pre[x2 + 1][y1 - 1], 1, n * n) ? ans : pre[x2 + 1][y1 - 1];
}
// (x1, y2)
if (x1 > 0 && y2 < n - 1) {
ans = cmp(ans, suf[x1 - 1][y2 + 1], 1, n * n) ? ans : suf[x1 - 1][y2 + 1];
}
cout << VAL(ans) << '\n';
}
}
// signed main() {
int main() {
// freopen("ex_d1.in", "r", stdin);
// freopen(".out","w",stdout);
ios::sync_with_stdio(false);
cin.tie(0);
mod1 = 998244353;
mod2 = 1e9 + 7;
for (int i = 0; i <= 400 * 400; i++) {
pw1[i] = rng() % mod1;
pw2[i] = rng() % mod2;
}
int t;
cin >> t;
while (t--) {
_sol();
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 8928kb
input:
1 2 2 2 3 1 4 1 1 2 2 2 2 1 1
output:
276 336
result:
ok 2 lines
Test #2:
score: 0
Accepted
time: 1298ms
memory: 156436kb
input:
5 399 200000 1 5 3 2 3 5 5 4 3 5 2 5 1 2 4 1 3 1 1 5 5 5 5 2 2 2 3 3 5 3 5 3 1 2 3 2 3 3 4 3 5 3 1 3 4 5 2 1 4 4 5 4 5 3 3 2 4 2 3 5 1 2 4 4 3 2 3 5 4 4 1 2 3 5 5 2 1 5 5 1 4 1 2 5 3 4 5 3 5 5 5 3 2 3 1 2 1 1 2 5 1 4 1 3 4 1 1 3 5 3 2 2 3 1 3 1 3 1 5 1 4 1 1 2 5 1 4 3 1 3 2 5 4 2 3 5 5 2 5 3 1 5 3 1...
output:
941207053 72597563 125162256 674945829 362141056 46633728 833089835 282730934 340464097 953149538 282730934 736432213 513486467 333152891 355535008 797175106 144845122 87755843 408404885 635578224 670481364 176200794 282730934 733794083 302174217 658772773 282730934 556675047 149516187 282730934 362...
result:
ok 1000000 lines