QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#688724#1268. Diamond Rushwzj33300WA 1386ms100528kbC++147.5kb2024-10-30 13:04:292024-10-30 13:04:31

Judging History

你现在查看的是最新测评结果

  • [2024-10-30 13:04:31]
  • 评测
  • 测评结果:WA
  • 用时:1386ms
  • 内存:100528kb
  • [2024-10-30 13:04:29]
  • 提交

answer

/**
  * created     : 30.10.2024 12:36:13
  * author      : wzj33300
  */

#include <bits/stdc++.h>
using namespace std;

#ifdef DEBUG
#include <algo/debug.h>
#else
#define debug(...) 42
#define assert(...) 42
#endif

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using db = long double;  // or double, if TL is tight
using str = string;      // yay python!

// pairs
using pi = pair<int, int>;
using pl = pair<ll, ll>;
using pd = pair<db, db>;
#define mp make_pair
#define fi first
#define se second

// ^ lol this makes everything look weird but I'll try it
template <class T>
using vc = vector<T>;
template <class T, size_t SZ>
using AR = array<T, SZ>;
using vi = vc<int>;
using vb = vc<bool>;
using vl = vc<ll>;
using vd = vc<db>;
using vs = vc<str>;
using vpi = vc<pi>;
using vpl = vc<pl>;
using vpd = vc<pd>;

// vectors
// oops size(x), rbegin(x), rend(x) need C++17
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define sor(x) sort(all(x))
#define rsz resize
#define ins insert
#define pb push_back
#define eb emplace_back
#define ft front()
#define bk back()

#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep1(i, n) for (int i = 1; i < (n); ++i)
#define rep1n(i, n) for (int i = 1; i <= (n); ++i)
#define repr(i, n) for (int i = (n) - 1; i >= 0; --i)

#define rep_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))

#define lb lower_bound
#define ub upper_bound
template <class T>
int lwb(vc<T> &a, const T &b) {
  return int(lb(all(a), b) - bg(a));
}
template <class T>
int upb(vc<T> &a, const T &b) {
  return int(ub(all(a), b) - bg(a));
}
// const int MOD = 998244353;  // 1e9+7;
const int Big = 1e9;  // not too close to INT_MAX
const ll BIG = 1e18;  // not too close to LLONG_MAX
const db PI = acos((db)-1);
const int dx[4]{1, 0, -1, 0}, dy[4]{0, 1, 0, -1};  // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

int pct(int x) { return __builtin_popcount(x); }
int pct(u32 x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int pct(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <class T>
bool ckmin(T &a, const T &b) {
  return b < a ? a = b, 1 : 0;
}  // set a = min(a,b)
template <class T>
bool ckmax(T &a, const T &b) {
  return a < b ? a = b, 1 : 0;
}  // set a = max(a,b)

template <class T, class U>
T fstTrue(T lo, T hi, U f) {
  ++hi;
  assert(lo <= hi);  // assuming f is increasing
  while (lo < hi) {  // find first index such that f is true
    T mid = lo + (hi - lo) / 2;
    f(mid) ? hi = mid : lo = mid + 1;
  }
  return lo;
}
template <class T, class U>
T lstTrue(T lo, T hi, U f) {
  --lo;
  assert(lo <= hi);  // assuming f is decreasing
  while (lo < hi) {  // find first index such that f is true
    T mid = lo + (hi - lo + 1) / 2;
    f(mid) ? lo = mid : hi = mid - 1;
  }
  return lo;
}

const int N = 400 * 400 * 25 * 2, mod = 1e9 + 7;

int sum[N], ls[N], rs[N], cnt, val[N], pw[400 * 400 + 1];

void update(int &rt, int l, int r, int x) {
  ++cnt;
  ls[cnt] = ls[rt], rs[cnt] = rs[rt], sum[cnt] = sum[rt], val[cnt] = val[rt];
  rt = cnt;
  sum[rt]++;
  val[rt] += pw[x];
  val[rt] %= mod;
  if (l == r) return;
  int mid = l + r >> 1;
  if (x <= mid)
    update(ls[rt], l, mid, x);
  else
    update(rs[rt], mid + 1, r, x);
}

bool cmp(int x, int y, int l, int r) {
  if (l == r) return sum[x] > sum[y];
  int mid = l + r >> 1;
  if (sum[rs[x]] != sum[rs[y]])
    return cmp(rs[x], rs[y], mid + 1, r);
  else
    return cmp(ls[x], ls[y], l, mid);
}

using P = pair<int, int>;

P LS(P x) {
  return P{ls[x.fi], ls[x.se]};
}
P RS(P x) {
  return P{rs[x.fi], rs[x.se]};
}
int SUM(P x) {
  return sum[x.fi] + sum[x.se];
}
int VAL(P x) {
  return (val[x.fi] + val[x.se]) % mod;
}

bool cmp(P x, P y, int l, int r) {
  if (l == r) return SUM(x) > SUM(y);
  int mid = l + r >> 1;
  if (SUM(RS(x)) != SUM(RS(y)))
    return cmp(RS(x), RS(y), mid + 1, r);
  else
    return cmp(LS(x), LS(y), l, mid);
}

void _sol() {
  int n, m;
  cin >> n >> m;
  pw[0] = 1;
  for (int i = 1; i <= n * n; i++) {
    pw[i] = 1ll * pw[i - 1] * n * n % mod;
  }
  vc<vi> a(n, vi(n));
  for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
      cin >> a[i][j];
  vc<vc<int>> f(n, vc<int>(n));
  cnt = 0;
  for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++) {
      if (i == 0 && j == 0) {
      } else if (i == 0)
        f[i][j] = f[i][j - 1];
      else if (j == 0)
        f[i][j] = f[i - 1][j];
      else
        f[i][j] = cmp(f[i - 1][j], f[i][j - 1], 1, n * n) ? f[i - 1][j] : f[i][j - 1];
      update(f[i][j], 1, n * n, a[i][j]);
      debug(val[f[i][j]]);
    }
  vc<vc<int>> g(n, vc<int>(n));
  vc<vc<P>> pre(n, vc<P>(n)), suf(pre);
  repr(i, n) repr(j, n) {
    if (i == n - 1 && j == n - 1) {
    } else if (i == n - 1)
      g[i][j] = g[i][j + 1];
    else if (j == n - 1)
      g[i][j] = g[i + 1][j];
    else
      g[i][j] = cmp(g[i + 1][j], g[i][j + 1], 1, n * n) ? g[i + 1][j] : g[i][j + 1];
    pre[i][j] = suf[i][j] = P{f[i][j], g[i][j]};
    update(g[i][j], 1, n * n, a[i][j]);
  }
  debug(f, g);
  for (int i = 0; i < n; i++) {
    for (int j = 1; j < n; j++) {
      pre[i][j] = cmp(pre[i][j], pre[i][j - 1], 1, n * n) ? pre[i][j] : pre[i][j - 1];
    }
    for (int j = n - 2; j >= 0; j--) {
      suf[i][j] = cmp(suf[i][j], suf[i][j + 1], 1, n * n) ? suf[i][j] : suf[i][j + 1];
    }
  }
  while (m--) {
    int x1, x2, y1, y2;
    cin >> x1 >> x2 >> y1 >> y2;
    --x1, --x2, --y1, --y2;
    P ans{0, 0};
    // (x2, y1)
    if (x2 < n - 1 && y1 > 0) {
      ans = cmp(ans, pre[x2 + 1][y1 - 1], 1, n * n) ? ans : pre[x2 + 1][y1 - 1];
    }
    // (x1, y2)
    if (x1 > 0 && y2 < n - 1) {
      ans = cmp(ans, suf[x1 - 1][y2 + 1], 1, n * n) ? ans : suf[x1 - 1][y2 + 1];
    }
    cout << VAL(ans) << '\n';
  }
}

// signed main() {
int main() {
  // freopen(".in", "r",stdin);
  // freopen(".out","w",stdout);
  ios::sync_with_stdio(false);
  cin.tie(0);
  int t;
  cin >> t;
  while (t--) {
    _sol();
  }
  return 0;
}

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 5688kb

input:

1
2 2
2 3
1 4
1 1 2 2
2 2 1 1

output:

276
336

result:

ok 2 lines

Test #2:

score: -100
Wrong Answer
time: 1386ms
memory: 100528kb

input:

5
399 200000
1 5 3 2 3 5 5 4 3 5 2 5 1 2 4 1 3 1 1 5 5 5 5 2 2 2 3 3 5 3 5 3 1 2 3 2 3 3 4 3 5 3 1 3 4 5 2 1 4 4 5 4 5 3 3 2 4 2 3 5 1 2 4 4 3 2 3 5 4 4 1 2 3 5 5 2 1 5 5 1 4 1 2 5 3 4 5 3 5 5 5 3 2 3 1 2 1 1 2 5 1 4 1 3 4 1 1 3 5 3 2 2 3 1 3 1 3 1 5 1 4 1 1 2 5 1 4 3 1 3 2 5 4 2 3 5 5 2 5 3 1 5 3 1...

output:

239637470
11653654
54202328
107138109
226789287
211745820
238088608
360544356
712558040
794834856
630227255
368804213
513218697
802408423
761110221
219929174
364779290
376033530
254082052
387771217
836973328
57827172
360544356
476053343
288201576
216871467
78828114
999721775
742082223
130801667
7585...

result:

wrong answer 1st lines differ - expected: '941207053', found: '239637470'