QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#687539 | #5310. Painting | FreeTimeLove | AC ✓ | 934ms | 194024kb | C++14 | 3.3kb | 2024-10-29 19:33:51 | 2024-10-29 19:33:51 |
Judging History
answer
#include<bits/stdc++.h>
namespace FRTMLV{
#define ll long long
#define LD long double
#define i7 __int128
#define re return
#define con continue
using namespace std;
template<class T>inline bool ckmin(T &a,T b){re b<a?a=b,1:0;}
template<class T>inline bool ckmax(T &a,T b){re a<b?a=b,1:0;}
const int N=1.2e6+5;
inline int rd(){
int ans=0,f=0;
char ch=getchar();
while(ch<'0'||ch>'9')f^=(ch=='-'),ch=getchar();
while(ch>='0'&&ch<='9')ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
re f?-ans:ans;
}
const int MX=1e6+1;
int n,W,tt;
int nx[N][20],siz[N];
set<int>st;
int hd[MX+5];
inline i7 abs(i7 x){re x<0?-x:x;}
struct frac{
i7 x,y;
void clr(){if(y<0)y=-y,x=-x;i7 g=abs(__gcd(x,y));x/=g,y/=g;}
frac operator +(const frac &a)const{frac ans={x*a.y+y*a.x,y*a.y};ans.clr();re ans;}
frac operator -(const frac &a)const{frac ans={x*a.y-y*a.x,y*a.y};ans.clr();re ans;}
frac operator *(const frac &a)const{frac ans={x*a.x,y*a.y};ans.clr();re ans;}
frac operator /(const frac &a)const{frac ans={x*a.y,y*a.x};ans.clr();re ans;}
bool operator <(const frac &a)const{re x*a.y<a.x*y;}
bool operator ==(const frac &a)const{re x*a.y==a.x*y;}
};
struct point{
frac x,y;
void out(){
printf("(%lld/%lld,%lld/%lld)\n",(ll)x.x,(ll)x.y,(ll)y.x,(ll)y.y);
}
}p[N];
struct line{
frac k,b;
inline frac gty(frac x){re k*x+b;}
};
inline frac gtx(line &l1,line &l2){re (l1.b-l2.b)/(l2.k-l1.k);}
int addfront(point P,int id){
p[++tt]=P,siz[tt]=siz[id]+1,nx[tt][0]=id;
for(int i=1;i<20;i++)nx[tt][i]=nx[nx[tt][i-1]][i-1];
re tt;
}
int gt(int id,int sum){
for(int i=19;i>=0;i--)
if(sum>=(1<<i))sum-=1<<i,id=nx[id][i];
re id;
}
void addback(int id,point P){
p[++tt]=P,siz[id]++;
int cnt=0;
while(siz[id]-1>=(1<<(cnt+1)))++cnt;
id=gt(id,siz[id]-1-(1<<cnt));
for(int i=cnt;i;i--)nx[id][i]=tt,id=nx[id][i-1];
nx[id][0]=tt;
}
signed main(){
n=rd(),W=rd();
p[++tt]={(frac){0,1},(frac){MX,1}};//init
p[++tt]={(frac){0,1},(frac){0,1}};
hd[0]=2,st.insert(0),siz[2]=2,nx[2][0]=1;
while(n--){
int y1=rd(),y2=rd(),fl=rd();
frac tmp={y2-y1,W};tmp.clr();
point P={(frac){0,1},(frac){y1,1}};
line li={tmp,(frac){y1,1}};
int id=hd[*(--st.lower_bound(y1))],H=id;
int sum=siz[id]-1;
for(int i=18;i>=0;i--){
if(sum<(1<<i))con;
int nwid=nx[id][i];
if(li.gty(p[nwid].x)==p[nwid].y){
id=nwid,sum-=1<<i;
break;
}
if(p[nwid].y<li.gty(p[nwid].x))id=nwid,sum-=1<<i;
}
// if(li.gty(p[id].x)==p[id].y){//split
// p[id].out();
// if(fl){
// siz[nx[id][0]]=sum,siz[H]-=sum;//
// int num1=addfront(p[id],nx[id][0]);
// int num2=addfront(P,num1);
// st.insert(y1),hd[y1]=num2;
//
// addback(H,P);
// }
// con;
// }
//common
point p1=p[id],p2=p[nx[id][0]],np;
int sfl=0;
if(li.gty(p[id].x)==p[id].y)np=p[id],sfl=1;
else if(p2.y==(frac){1000001,1}||p1.y==(frac){0,1}||p1.x==p2.x)np={(frac){W,1},(frac){y2,1}};
else {
frac k1=(p1.y-p2.y)/(p1.x-p2.x);
line tmp={k1,p1.y-p1.x*k1};
np.x=gtx(li,tmp),np.y=li.gty(np.x);
}
np.out();
if(fl){
siz[nx[id][0]]=sum,siz[H]-=sum;//
int num1=addfront(np,nx[id][0]);
int num2=addfront(P,num1);
st.insert(y1),hd[y1]=num2;
if(!sfl)addback(H,np);
addback(H,P);
}
}
re 0;
}
/*
*/
}signed main(){re FRTMLV::main();}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 2ms
memory: 10168kb
input:
4 3 1 2 1 2 1 1 3 1 0 3 2 1
output:
(3/1,2/1) (3/2,3/2) (2/1,5/3) (3/1,2/1)
result:
ok 4 lines
Test #2:
score: 0
Accepted
time: 574ms
memory: 10372kb
input:
300000 894665 1 1000000 1 2 999999 1 3 999997 1 4 999994 1 5 999990 1 6 999985 1 7 999979 1 8 999972 1 9 999964 1 10 999955 1 11 999945 1 12 999934 1 13 999922 1 14 999909 1 15 999895 1 16 999880 1 17 999864 1 18 999847 1 19 999829 1 20 999810 1 21 999790 1 22 999769 1 23 999747 1 24 999724 1 25 999...
output:
(894665/1,1000000/1) (894665/2,1000001/2) (894665/3,1000003/3) (894665/4,500003/2) (178933/1,200002/1) (894665/6,1000015/6) (894665/7,1000021/7) (894665/8,250007/2) (894665/9,1000036/9) (178933/2,200009/2) (894665/11,1000055/11) (894665/12,500033/6) (894665/13,1000078/13) (894665/14,1000091/14) (178...
result:
ok 300000 lines
Test #3:
score: 0
Accepted
time: 527ms
memory: 12244kb
input:
300000 748539 1 1000000 1 2 999999 1 3 999997 1 4 999994 1 5 999990 1 6 999985 1 7 999979 1 8 999972 1 9 999964 1 10 999955 1 11 999945 1 12 999934 1 13 999922 1 14 999909 1 15 999895 1 16 999880 1 17 999864 1 18 999847 1 19 999829 1 20 999810 1 21 999790 1 22 999769 1 23 999747 1 24 999724 1 25 999...
output:
(748539/1,1000000/1) (748539/2,1000001/2) (249513/1,1000003/3) (748539/4,500003/2) (748539/5,200002/1) (249513/2,1000015/6) (748539/7,1000021/7) (748539/8,250007/2) (83171/1,1000036/9) (748539/10,200009/2) (68049/1,1000055/11) (249513/4,500033/6) (748539/13,1000078/13) (748539/14,1000091/14) (249513...
result:
ok 300000 lines
Test #4:
score: 0
Accepted
time: 700ms
memory: 53632kb
input:
300000 329779 725400 466189 0 162004 217124 0 17706 369295 0 143330 449439 0 974743 495692 0 476940 609424 0 307270 769869 0 664031 252064 0 350818 610178 1 432310 398376 1 578066 277363 0 891345 770652 0 815291 550496 0 756083 89624 0 867560 132663 0 668047 648059 0 758279 558971 0 647877 798646 0 ...
output:
(329779/1,466189/1) (329779/1,217124/1) (329779/1,369295/1) (329779/1,449439/1) (329779/1,495692/1) (329779/1,609424/1) (329779/1,769869/1) (329779/1,252064/1) (329779/1,610178/1) (13437175134/146647,62014289806/146647) (10705945456/80009,36488460402/80009) (329779/1,770652/1) (153173441467/524155,6...
result:
ok 300000 lines
Test #5:
score: 0
Accepted
time: 807ms
memory: 108972kb
input:
300000 694159 107635 109585 0 534761 296221 0 144102 179000 0 538335 642812 1 51653 789858 1 260572 297502 0 422312 230960 1 323495 527460 0 117743 91695 1 875390 106429 0 592512 956940 1 429082 37803 1 711668 658986 1 614065 738921 1 667461 145160 1 480889 809090 0 468893 650474 1 945932 974900 0 8...
output:
(694159/1,109585/1) (694159/1,296221/1) (694159/1,179000/1) (694159/1,642812/1) (168917345219/316864,196002519097/316864) (145023004121/701275,38089601594/140255) (257296280781/929557,321636734816/929557) (68594709903/395317,148038282320/395317) (15292322770/254751,29421309553/254751) (233969761745/...
result:
ok 300000 lines
Test #6:
score: 0
Accepted
time: 875ms
memory: 162100kb
input:
300000 841571 864537 929867 1 827774 222788 1 594947 97405 1 136507 869841 1 767546 276887 0 214999 287658 1 193877 95397 1 880581 221638 1 435653 172067 1 708385 794804 1 112241 426357 1 269382 890618 1 639737 968391 1 984457 815612 1 178024 935648 1 786418 222454 1 698936 199097 1 604327 637464 1 ...
output:
(841571/1,929867/1) (841571/1,222788/1) (841571/1,97405/1) (96452452310/307719,126053207273/307719) (5631793132/12703,6466646810/12703) (22018863644/220225,49249204851/220225) (24140464135/415907,77809902639/415907) (13502165124/724273,627208961121/724273) (125876299183/498460,88865122801/249230) (1...
result:
ok 300000 lines
Test #7:
score: 0
Accepted
time: 904ms
memory: 179088kb
input:
300000 423599 702291 13316 0 823376 324624 1 332084 339170 1 796909 473709 0 414801 475840 1 712638 235854 1 613165 447937 1 252983 673258 1 622687 27409 1 982234 935915 1 444618 148018 0 902272 211128 1 318963 363730 1 447033 949507 0 219549 778365 1 903735 908804 1 830179 642747 1 383246 554384 1 ...
output:
(423599/1,13316/1) (423599/1,324624/1) (104055399954/252919,85731000752/252919) (11211394733/175552,2052263037/2743) (173071961425/559791,257140876016/559791) (11469405033/48893,21933562806/48893) (42136663327/311556,2078565594/3709) (33507104499/413189,137773965562/413189) (672251613/71675,43686384...
result:
ok 300000 lines
Test #8:
score: 0
Accepted
time: 934ms
memory: 194024kb
input:
300000 606503 969162 499887 1 982467 476155 1 813898 466871 1 919610 819701 1 267484 907609 1 824721 490861 1 387197 878325 1 809204 742752 1 35348 71222 1 75368 820418 1 733140 325762 1 121959 320121 1 104047 533979 1 845038 737152 0 827435 615384 1 982300 340253 1 50533 570452 1 734351 776533 1 92...
output:
(606503/1,499887/1) (8069522415/37037,29651149119/37037) (606503/1,466871/1) (15026718328/184683,55786996082/61561) (165700865121/493576,306910313659/493576) (606503/1,490861/1) (258795436603/838155,534095910263/838155) (2846925082/280575,226730486612/280575) (606503/1,71222/1) (447920660590/1092077...
result:
ok 300000 lines
Test #9:
score: 0
Accepted
time: 497ms
memory: 33852kb
input:
300000 879149 116071 862 0 158243 245 0 148791 414 0 696577 955 0 382289 841 1 753537 277 0 691381 102 0 902273 638 0 636078 121 0 846069 338 0 209415 476 0 938281 286 0 567567 812 0 395269 317 0 638750 19 0 822890 57 0 529243 137 1 784931 595 0 904266 457 0 281103 606 0 207471 884 0 953117 757 0 87...
output:
(879149/1,862/1) (879149/1,245/1) (879149/1,414/1) (879149/1,955/1) (879149/1,841/1) (81595576988/92953,131957641/92953) (271737922708/309831,542457943/309831) (457143413616/520187,514911211/520187) (223118345561/254509,488684629/254509) (407731723220/464283,582330347/464283) (879149/1,476/1) (48879...
result:
ok 300000 lines
Test #10:
score: 0
Accepted
time: 535ms
memory: 50544kb
input:
300000 310835 319788 772 0 497504 964 0 894936 618 0 294654 90 0 881733 706 0 245858 983 0 559020 541 0 736248 666 0 453767 954 0 158758 958 0 763887 432 0 536922 327 0 882208 941 0 674991 503 0 92620 448 0 168993 777 1 645752 987 0 354095 426 0 356444 434 0 250356 643 1 279019 297 0 64002 163 0 804...
output:
(310835/1,772/1) (310835/1,964/1) (310835/1,618/1) (310835/1,90/1) (310835/1,706/1) (310835/1,983/1) (310835/1,541/1) (310835/1,666/1) (310835/1,954/1) (310835/1,958/1) (310835/1,432/1) (310835/1,327/1) (310835/1,941/1) (310835/1,503/1) (310835/1,448/1) (310835/1,777/1) (310835/1,987/1) (57536180170...
result:
ok 300000 lines
Test #11:
score: 0
Accepted
time: 612ms
memory: 91128kb
input:
300000 735537 701978 710 1 317350 506 1 994500 510 0 29112 354 1 595720 267 0 187266 549 0 778998 808 1 611272 914 0 99687 461 0 99147 712 0 156253 168 0 700158 863 0 39453 626 0 855867 553 0 841635 917 0 644146 114 1 519578 971 1 753580 742 1 219545 199 0 564270 186 0 26278 263 1 128304 400 0 34213...
output:
(735537/1,710/1) (735537/1,506/1) (35860125719/48787,58014370/48787) (735537/1,354/1) (204751434690/278609,216701870/278609) (95681595108/130127,79468554/130127) (735537/1,808/1) (33358809561/45455,103802386/45455) (735537/1,461/1) (53498793337/72803,175784818/218409) (93516909717/127327,50422746/12...
result:
ok 300000 lines
Test #12:
score: 0
Accepted
time: 710ms
memory: 162376kb
input:
300000 737138 938874 996 0 236261 342 1 294733 837 1 495487 53 1 767065 449 1 527431 967 1 769556 678 1 190570 261 0 937523 748 1 132549 535 1 666839 915 1 587237 49 1 621620 405 1 349581 510 1 234810 702 1 324423 189 1 201382 183 1 928491 1 0 616164 513 1 197342 29 1 49493 565 1 764718 8 1 657160 5...
output:
(737138/1,996/1) (737138/1,342/1) (737138/1,837/1) (73991701026/100769,199550885/100769) (43521733227/59090,31856143/29545) (44160831873/60038,63116917/30019) (175005038287/237491,222144699/237491) (737138/1,261/1) (473824935020/642879,564246467/642879) (76450056256/103905,81067877/103905) (18470098...
result:
ok 300000 lines