QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#686968 | #9515. 无限地狱 | hos_lyric | 100 ✓ | 5288ms | 13332kb | C++14 | 12.5kb | 2024-10-29 16:32:32 | 2024-10-29 16:32:32 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
inline long long divide(long long a, int b) {
return a / b;
}
inline long long divide(long long a, long long b) {
return a / b;
}
struct Quotients {
long long N;
int N2, N3, N4, N6;
int len;
Quotients(long long N_ = 0) : N(N_) {
N2 = sqrt(static_cast<long double>(N));
N3 = cbrt(static_cast<long double>(N));
for (; static_cast<long long>(N3) * N3 * N3 < N; ++N3) {}
for (; static_cast<long long>(N3) * N3 * N3 > N; --N3) {}
N4 = sqrt(static_cast<long double>(N2));
N6 = sqrt(static_cast<long double>(N3));
len = 2 * N2 + ((static_cast<long long>(N2) * (N2 + 1) <= N) ? 1 : 0);
}
long long operator[](int i) const {
return (i <= N2) ? i : divide(N, len - i);
}
int indexOf(long long x) const {
return (x <= N2) ? x : (len - divide(N, x));
}
friend std::ostream &operator<<(std::ostream &os, const Quotients &quo) {
os << "[";
for (int i = 0; i < quo.len; ++i) {
if (i > 0) os << ", ";
os << quo[i];
}
os << "]";
return os;
}
};
template <class T> struct Dirichlet {
Quotients quo;
vector<T> ts;
Dirichlet(long long N = 0) : quo(N), ts(quo.len + 1) {}
T operator[](int i) const {
return ts[i];
}
T &operator[](int i) {
return ts[i];
}
T operator()(long long x) const {
return ts[quo.indexOf(x)];
}
T &operator()(long long x) {
return ts[quo.indexOf(x)];
}
T point(int i) const {
return ts[i] - ts[i - 1];
}
friend std::ostream &operator<<(std::ostream &os, const Dirichlet &A) {
os << "[";
for (int i = 1; i < A.quo.len; ++i) {
if (i > 1) os << ", ";
os << A.quo[i] << ":" << A.ts[i];
}
os << "]";
return os;
}
friend Dirichlet operator*(const Dirichlet &A, const Dirichlet &B) {
assert(A.quo.N == B.quo.N);
const Quotients quo = A.quo;
Dirichlet C(quo.N);
// i = j <= N^(1/2)
for (int i = 1; i <= quo.N4; ++i) {
C[i * i] += A.point(i) * B.point(i);
}
for (int i = quo.N4 + 1; i <= quo.N2; ++i) {
C[quo.len - divide(quo.N, static_cast<long long>(i) * i)]
+= A.point(i) * B.point(i);
}
// i < j <= (N/i)^(1/2)
for (int i = 1; i <= quo.N3; ++i) {
const T ai = A.point(i), bi = B.point(i);
if (ai || bi) {
const long long N_i = divide(quo.N, i);
const int midJ = max(i, quo.N2 / i);
const int limJ = sqrt(static_cast<long double>(N_i));
for (int j = i + 1; j <= midJ; ++j) {
C[i * j] += ai * B.point(j) + A.point(j) * bi;
}
for (int j = midJ + 1; j <= limJ; ++j) {
C[quo.len - divide(N_i, j)] += ai * B.point(j) + A.point(j) * bi;
}
}
}
for (int i = 2; i < quo.len; ++i) C[i] += C[i - 1];
// i < j && k <= (N/i)^(1/2) < j
for (int i = 1; i <= quo.N3; ++i) {
const T ai = A.point(i), bi = B.point(i);
if (ai || bi) {
const long long N_i = divide(quo.N, i);
const int midK = quo.N2 / i;
const int limK = sqrt(static_cast<long double>(N_i));
for (int k = 1; k <= midK; ++k) {
C[quo.len - k] +=
ai * (B[quo.len - i * k] - B[limK]) + (A[quo.len - i * k] - A[limK]) * bi;
}
for (int k = midK + 1; k <= limK; ++k) {
const int limJ = divide(N_i, k);
C[quo.len - k] += ai * (B[limJ] - B[limK]) + (A[limJ] - A[limK]) * bi;
}
}
}
for (int i = quo.N3 + 1; i <= quo.N2; ++i) {
const T ai = A.point(i), bi = B.point(i);
if (ai || bi) {
const long long N_i = divide(quo.N, i);
const int midK = quo.N2 / i;
const int limK = divide(N_i, i);
for (int k = 1; k <= midK; ++k) {
C[quo.len - k] +=
ai * (B[quo.len - i * k] - B[i]) + (A[quo.len - i * k] - A[i]) * bi;
}
for (int k = midK + 1; k <= limK; ++k) {
const int limJ = divide(N_i, k);
C[quo.len - k] += ai * (B[limJ] - B[i]) + (A[limJ] - A[i]) * bi;
}
}
}
return C;
}
// TODO: operator/
// TODO: * powerful
};
// a^e, 0 <= e < 2^32
struct Power {
static constexpr int E = 18;
vector<Mint> baby, giant;
Power() {}
Power(Mint a) : baby((1 << E) + 1), giant(1 << E) {
baby[0] = 1;
for (int i = 1; i <= 1 << E; ++i) baby[i] = baby[i - 1] * a;
giant[0] = 1;
for (int i = 1; i < 1 << E; ++i) giant[i] = giant[i - 1] * baby[1 << E];
}
Mint operator()(long long e) const {
return giant[e >> E] * baby[e & ((1 << E) - 1)];
}
} two(2);
Mint div2(Mint a) {
(a.x += (a.x & 1) * MO) >>= 1;
return a;
}
using Di = Dirichlet<Mint>;
// \sum[1<=i<=n] 2^(i/2)
Mint Half(Int n) {
return (n&1 ? 4 : 3) * two(n/2) - 3;
}
int main() {
Int N;
for (; ~scanf("%lld", &N); ) {
const Quotients quo(N);
Di Moe(N);
{
vector<int> lpf(quo.N2 + 1, 0), moe(quo.N2 + 1, 0);
for (int p = 2; p <= quo.N2; ++p) lpf[p] = p;
moe[1] = 1;
for (int p = 2; p <= quo.N2; ++p) if (lpf[p] == p) {
for (int n = p; n <= quo.N2; n += p) {
chmin(lpf[n], p);
moe[n] = (n / p % p) ? -moe[n / p] : 0;
}
}
for (int i = 1; i <= quo.N2; ++i) Moe[i] = moe[i];
for (int i = 1; i < quo.len; ++i) Moe[i] += Moe[i - 1];
Di Zeta(N);
for (int i = 1; i < quo.len; ++i) Zeta[i] = quo[i];
Di A = Zeta * Moe;
for (int j = quo.N2 + 1; j < quo.len; ++j) {
// A(N/k)
A[j] = 1 - A[j];
const int k = quo.len - j;
for (int i = 2; quo.len - i * k > quo.N2; ++i) A[j] -= 1 * A[quo.len - i * k];
}
for (int i = quo.N2 + 1; i < quo.len; ++i) Moe[i] += A[i];
}
// cerr<<"Moe = "<<Moe<<endl;
cerr<<COLOR("96")<<"DONE Moe "<<clock()<<COLOR()<<endl;
/*
[1, n-1]: palindrome
A,B appears in this order
gcd(B) = 1
pal[n] = (\sum[d|n] mu[d] (2^(floor(n/d/2)) - 1)) - 2^(n/2 - 1) (n >= 2)
pal[1] = 0
*/
Di Pal(N);
{
for (int i = 1; i < quo.len; ++i) {
const Int n = quo[i];
Pal[i] = Half(n);
}
Pal = Pal * Moe;
for (int i = 1; i < quo.len; ++i) {
const Int n = quo[i];
Pal[i] -= (Half(n) + 1) / 2;
}
}
// cerr<<"Pal = "<<Pal<<endl;
cerr<<COLOR("96")<<"DONE Pal "<<clock()<<COLOR()<<endl;
/*
A,B appear in this order
g2: gcd(B) = 1
g2(n) = (\sum[1<=d<=n] mu(d) (2^(n/d) - 1)) - 2^(n-1)
= (\sum[1<=i<=n] \sum[d|i] mu(d) 2^(i/d-1)) - 2^(n-1)
*/
Di f2(N), g2(N);
for (int i = 1; i < quo.len; ++i) f2[i] = two(quo[i]-1) - 1;
for (int i = 1; i < quo.len; ++i) g2[i] = two(quo[i]) - 1;
g2 = g2 * Moe;
for (int i = 1; i < quo.len; ++i) g2[i] -= two(quo[i]-1);
cerr<<COLOR("96")<<"DONE g2 "<<clock()<<COLOR()<<endl;
/*
A,B,C appears in this order
g := gcd(C)
- g >= 2
- non-multiples of g is determined by mod g
- [1, g - 1] is palindrome
- multiples of g: recursively (but gcd = 1)
g3: gcd(B) = 1
*/
Di f3(N), g3(N), iroiro(N);
for (int i = 1; i < quo.len; ++i) {
const Quotients q(quo[i]);
// g >= 2
Mint h = div2(Half(1)) - 1;
for (int j = 2; j < q.len; ++j) {
const Int gL = q[j - 1];
const Int gR = q[j];
const int ii = quo.indexOf(q[q.len - j]);
// BC, BCA
f3[i] += (gR - gL) * (g2[ii] + g3[ii]);
// C, AC, BC, CA, CB, ACB, BCA, CAB, CBA
// f3[i] += ((Half(gR) / 2 - gR) - (Half(gL) / 2 - gL)) * iroiro[ii];
const Mint hh = div2(Half(gR)) - gR;
f3[i] += (hh - h) * iroiro[ii];
h = hh;
g3[i] += (Pal(gR) - Pal(gL)) * iroiro[ii];
}
iroiro[i] = 1 + 2*g2[i] + 2*f2[i] + 2*g3[i] + 2*f3[i];
if(i==quo.N2)cerr<<COLOR("96")<<"DONE f3[sqrt(N)] "<<clock()<<COLOR()<<endl;
}
/*
cerr<<"quo = "<<quo<<endl;
cerr<<"f2 = "<<f2<<endl;
cerr<<"f3 = "<<f3<<endl;
cerr<<"g2 = "<<g2<<endl;
cerr<<"g3 = "<<g3<<endl;
cerr<<"iroiro = "<<iroiro<<endl;
*/
Mint ans = 0;
ans += 1;
ans += (two(N-1) - 1);
ans += f3[quo.len - 1];
printf("%u\n", ans.x);
}
return 0;
}
/*
f1 = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
f2 = [0, 0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287]
f3 = [0, 0, 0, 0, 1, 2, 6, 9, 20, 28, 53, 68, 126, 157, 260, 338, 555, 682, 1112, 1367, 2218]
g2 = [0, 0, 0, 1, 3, 10, 21, 52, 108, 232, 471, 982, 1968, 4015, 8046, 16219, 32475, 65242, 130494, 261565, 523191]
g3 = [0, 0, 0, 0, 0, 1, 2, 5, 9, 15, 28, 43, 67, 98, 159, 224, 344, 471, 723, 978, 1492]
*/
Details
Tip: Click on the bar to expand more detailed information
Subtask #1:
score: 4
Accepted
Test #1:
score: 4
Accepted
time: 3ms
memory: 5092kb
input:
6
output:
38
result:
ok 1 number(s): "38"
Test #2:
score: 4
Accepted
time: 3ms
memory: 5088kb
input:
7
output:
73
result:
ok 1 number(s): "73"
Test #3:
score: 4
Accepted
time: 3ms
memory: 5160kb
input:
8
output:
148
result:
ok 1 number(s): "148"
Test #4:
score: 4
Accepted
time: 0ms
memory: 5084kb
input:
9
output:
284
result:
ok 1 number(s): "284"
Test #5:
score: 4
Accepted
time: 3ms
memory: 5144kb
input:
10
output:
565
result:
ok 1 number(s): "565"
Subtask #2:
score: 13
Accepted
Dependency #1:
100%
Accepted
Test #6:
score: 13
Accepted
time: 3ms
memory: 5088kb
input:
30
output:
536938322
result:
ok 1 number(s): "536938322"
Test #7:
score: 13
Accepted
time: 3ms
memory: 5052kb
input:
35
output:
210046687
result:
ok 1 number(s): "210046687"
Test #8:
score: 13
Accepted
time: 3ms
memory: 5048kb
input:
38
output:
680532913
result:
ok 1 number(s): "680532913"
Test #9:
score: 13
Accepted
time: 3ms
memory: 5148kb
input:
39
output:
362030079
result:
ok 1 number(s): "362030079"
Test #10:
score: 13
Accepted
time: 3ms
memory: 5168kb
input:
40
output:
723529503
result:
ok 1 number(s): "723529503"
Subtask #3:
score: 17
Accepted
Dependency #2:
100%
Accepted
Test #11:
score: 17
Accepted
time: 3ms
memory: 5056kb
input:
2000
output:
686289840
result:
ok 1 number(s): "686289840"
Test #12:
score: 17
Accepted
time: 0ms
memory: 5144kb
input:
2500
output:
672176744
result:
ok 1 number(s): "672176744"
Test #13:
score: 17
Accepted
time: 0ms
memory: 5144kb
input:
2998
output:
77001108
result:
ok 1 number(s): "77001108"
Test #14:
score: 17
Accepted
time: 3ms
memory: 5076kb
input:
2999
output:
337824775
result:
ok 1 number(s): "337824775"
Test #15:
score: 17
Accepted
time: 3ms
memory: 5088kb
input:
3000
output:
636156660
result:
ok 1 number(s): "636156660"
Subtask #4:
score: 21
Accepted
Dependency #3:
100%
Accepted
Test #16:
score: 21
Accepted
time: 4ms
memory: 5144kb
input:
100000
output:
809175948
result:
ok 1 number(s): "809175948"
Test #17:
score: 21
Accepted
time: 4ms
memory: 5096kb
input:
200000
output:
425311829
result:
ok 1 number(s): "425311829"
Test #18:
score: 21
Accepted
time: 5ms
memory: 5140kb
input:
500000
output:
302623178
result:
ok 1 number(s): "302623178"
Test #19:
score: 21
Accepted
time: 7ms
memory: 5060kb
input:
900000
output:
683174559
result:
ok 1 number(s): "683174559"
Test #20:
score: 21
Accepted
time: 0ms
memory: 5144kb
input:
1000000
output:
126560600
result:
ok 1 number(s): "126560600"
Subtask #5:
score: 22
Accepted
Dependency #4:
100%
Accepted
Test #21:
score: 22
Accepted
time: 106ms
memory: 6032kb
input:
100000000
output:
269652149
result:
ok 1 number(s): "269652149"
Test #22:
score: 22
Accepted
time: 251ms
memory: 6536kb
input:
300000000
output:
421051808
result:
ok 1 number(s): "421051808"
Test #23:
score: 22
Accepted
time: 437ms
memory: 7128kb
input:
700000000
output:
834273337
result:
ok 1 number(s): "834273337"
Test #24:
score: 22
Accepted
time: 560ms
memory: 7144kb
input:
990000000
output:
848544380
result:
ok 1 number(s): "848544380"
Test #25:
score: 22
Accepted
time: 564ms
memory: 7440kb
input:
1000000000
output:
341773916
result:
ok 1 number(s): "341773916"
Subtask #6:
score: 23
Accepted
Dependency #5:
100%
Accepted
Test #26:
score: 23
Accepted
time: 3603ms
memory: 11348kb
input:
12000000000
output:
877921487
result:
ok 1 number(s): "877921487"
Test #27:
score: 23
Accepted
time: 4668ms
memory: 12724kb
input:
17000000000
output:
691116504
result:
ok 1 number(s): "691116504"
Test #28:
score: 23
Accepted
time: 5261ms
memory: 13252kb
input:
19900000000
output:
87007717
result:
ok 1 number(s): "87007717"
Test #29:
score: 23
Accepted
time: 5288ms
memory: 13332kb
input:
19990000000
output:
455948458
result:
ok 1 number(s): "455948458"
Test #30:
score: 23
Accepted
time: 5286ms
memory: 13296kb
input:
20000000000
output:
128153394
result:
ok 1 number(s): "128153394"