QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#686212 | #5310. Painting | FreeTimeLove | WA | 108ms | 10204kb | C++14 | 3.5kb | 2024-10-29 08:53:28 | 2024-10-29 08:53:30 |
Judging History
answer
#include<bits/stdc++.h>
namespace FRTMLV{
#define ll long long
#define LD long double
#define i7 __int128
#define re return
#define con continue
using namespace std;
template<class T>inline bool ckmin(T &a,T b){re b<a?a=b,1:0;}
template<class T>inline bool ckmax(T &a,T b){re a<b?a=b,1:0;}
const int N=6e5+5;
inline int rd(){
int ans=0,f=0;
char ch=getchar();
while(ch<'0'||ch>'9')f^=(ch=='-'),ch=getchar();
while(ch>='0'&&ch<='9')ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
re f?-ans:ans;
}
const int MX=1e6+1;
int n,W,tt;
int nx[N][20],siz[N];
//
set<int>st;
int hd[MX+5];
//
struct frac{
ll x,y;
void clr(){if(y<0)y=-y,x=-x;ll g=llabs(__gcd(x,y));x/=g,y/=g;}
frac operator +(const frac &a)const{frac ans={x*a.y+y*a.x,y*a.y};ans.clr();re ans;}
frac operator -(const frac &a)const{frac ans={x*a.y-y*a.x,y*a.y};ans.clr();re ans;}
frac operator *(const frac &a)const{frac ans={x*a.x,y*a.y};ans.clr();re ans;}
frac operator /(const frac &a)const{frac ans={x*a.y,y*a.x};ans.clr();re ans;}
bool operator <(const frac &a)const{re x*a.y<a.x*y;}
bool operator ==(const frac &a)const{re x*a.y==a.x*y;}
};
struct point{
frac x,y;
void out(){
printf("(%lld/%lld,%lld/%lld)\n",x.x,x.y,y.x,y.y);
}
}p[N];
struct line{
frac k,b;
inline frac gty(frac x){re k*x+b;}
};
inline frac gtx(line &l1,line &l2){re (l1.b-l2.b)/(l2.k-l1.k);}
int addfront(point P,int id){
p[++tt]=P,siz[tt]=siz[id]+1,nx[tt][0]=id;
for(int i=1;i<20;i++)nx[tt][i]=nx[nx[tt][i-1]][i-1];
re tt;
}
int gt(int id,int sum){
for(int i=19;i>=0;i--)
if(sum>=(1<<i))sum-=1<<i,id=nx[id][i];
re id;
}
void addback(int id,point P){
p[++tt]=P,siz[id]++;
int cnt=0;
while(siz[id]-1>=(1<<(cnt+1)))++cnt;
// int nid=gt(id,siz[id]-(1<<cnt));
id=gt(id,siz[id]-(1<<cnt));
for(int i=cnt;i;i--)nx[id][i]=tt,id=nx[id][i-1];
nx[id][0]=tt;
}
signed main(){
n=rd(),W=rd();
while(n--){
int y1=rd(),y2=rd(),fl=rd();
frac tmp={y2-y1,W};tmp.clr();
point P={(frac){0,1},(frac){y1,1}};
line li={tmp,(frac){y1,1}};
if(!tt){
printf("(%d/1,%d/1)\n",W,y2);
if(fl){
p[++tt]=P;
p[++tt]={(frac){W,1},(frac){y2,1}};
p[++tt]={(frac){0,1},(frac){0,1}};
nx[2][0]=1,nx[3][0]=2,nx[3][1]=1,siz[3]=3;
hd[0]=3,st.insert(0);
p[++tt]={(frac){0,1},(frac){MX,1}};
p[++tt]={(frac){W,1},(frac){y2,1}};
p[++tt]=P;
nx[5][0]=4,nx[6][0]=5,nx[6][1]=4,siz[6]=3;
hd[y1]=6,st.insert(y1);
}
con;
}
int id=hd[*(--st.lower_bound(y1))],H=id;
int sum=siz[id]-1;
for(int i=18;i>=0;i--){
if(sum<(1<<i))con;
int nwid=nx[id][i];
if(li.gty(p[nwid].x)==p[nwid].y){
id=nwid,sum-=1<<i;
break;
}
if(p[nwid].y<li.gty(p[nwid].x))id=nwid,sum-=1<<i;
}
if(li.gty(p[id].x)==p[id].y){//split
p[id].out();
if(fl){
siz[nx[id][0]]=sum,siz[id]-=sum;
int num1=addfront(p[id],nx[id][0]);
int num2=addfront(P,num1);
st.insert(y1),hd[y1]=num2;
addback(H,P);
}
con;
}
//common
point p1=p[id],p2=p[nx[id][0]],np;
if(p1.x==p2.x)np={(frac){W,1},(frac){y2,1}};
else {
frac k1=(p1.y-p2.y)/(p1.x-p2.x);
line tmp={k1,p1.y-p1.x*k1};
np.x=gtx(li,tmp),np.y=li.gty(np.x);
}
np.out();
if(fl){
siz[nx[id][0]]=sum,siz[id]-=sum;
int num1=addfront(np,nx[id][0]);
int num2=addfront(P,num1);
st.insert(y1),hd[y1]=num2;
addback(H,np);
addback(H,P);
}
}
re 0;
}
/*
4 3
1 2 1
2 1 1
3 1 0
3 2 1
*/
}signed main(){re FRTMLV::main();}
详细
Test #1:
score: 100
Accepted
time: 2ms
memory: 9968kb
input:
4 3 1 2 1 2 1 1 3 1 0 3 2 1
output:
(3/1,2/1) (3/2,3/2) (2/1,5/3) (3/1,2/1)
result:
ok 4 lines
Test #2:
score: -100
Wrong Answer
time: 108ms
memory: 10204kb
input:
300000 894665 1 1000000 1 2 999999 1 3 999997 1 4 999994 1 5 999990 1 6 999985 1 7 999979 1 8 999972 1 9 999964 1 10 999955 1 11 999945 1 12 999934 1 13 999922 1 14 999909 1 15 999895 1 16 999880 1 17 999864 1 18 999847 1 19 999829 1 20 999810 1 21 999790 1 22 999769 1 23 999747 1 24 999724 1 25 999...
output:
(894665/1,1000000/1) (894665/2,1000001/2) (894665/3,1000003/3) (894665/4,500003/2) (178933/1,200002/1) (894665/6,1000015/6) (894665/7,1000021/7) (894665/1,999972/1) (894665/9,1000036/9) (178933/2,200009/2) (894665/11,1000055/11) (894665/12,500033/6) (894665/13,1000078/13) (894665/14,1000091/14) (178...
result:
wrong answer 8th lines differ - expected: '(894665/8,250007/2)', found: '(894665/1,999972/1)'