QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#685912 | #6742. Leaves | maspy | AC ✓ | 23ms | 5220kb | C++23 | 27.7kb | 2024-10-28 21:56:06 | 2024-10-28 21:56:06 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/graph/tree.hpp"
#line 2 "/home/maspy/compro/library/graph/base.hpp"
template <typename T>
struct Edge {
int frm, to;
T cost;
int id;
};
template <typename T = int, bool directed = false>
struct Graph {
static constexpr bool is_directed = directed;
int N, M;
using cost_type = T;
using edge_type = Edge<T>;
vector<edge_type> edges;
vector<int> indptr;
vector<edge_type> csr_edges;
vc<int> vc_deg, vc_indeg, vc_outdeg;
bool prepared;
class OutgoingEdges {
public:
OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}
const edge_type* begin() const {
if (l == r) { return 0; }
return &G->csr_edges[l];
}
const edge_type* end() const {
if (l == r) { return 0; }
return &G->csr_edges[r];
}
private:
const Graph* G;
int l, r;
};
bool is_prepared() { return prepared; }
Graph() : N(0), M(0), prepared(0) {}
Graph(int N) : N(N), M(0), prepared(0) {}
void build(int n) {
N = n, M = 0;
prepared = 0;
edges.clear();
indptr.clear();
csr_edges.clear();
vc_deg.clear();
vc_indeg.clear();
vc_outdeg.clear();
}
void add(int frm, int to, T cost = 1, int i = -1) {
assert(!prepared);
assert(0 <= frm && 0 <= to && to < N);
if (i == -1) i = M;
auto e = edge_type({frm, to, cost, i});
edges.eb(e);
++M;
}
#ifdef FASTIO
// wt, off
void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }
void read_graph(int M, bool wt = false, int off = 1) {
for (int m = 0; m < M; ++m) {
INT(a, b);
a -= off, b -= off;
if (!wt) {
add(a, b);
} else {
T c;
read(c);
add(a, b, c);
}
}
build();
}
#endif
void build() {
assert(!prepared);
prepared = true;
indptr.assign(N + 1, 0);
for (auto&& e: edges) {
indptr[e.frm + 1]++;
if (!directed) indptr[e.to + 1]++;
}
for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
auto counter = indptr;
csr_edges.resize(indptr.back() + 1);
for (auto&& e: edges) {
csr_edges[counter[e.frm]++] = e;
if (!directed)
csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
}
}
OutgoingEdges operator[](int v) const {
assert(prepared);
return {this, indptr[v], indptr[v + 1]};
}
vc<int> deg_array() {
if (vc_deg.empty()) calc_deg();
return vc_deg;
}
pair<vc<int>, vc<int>> deg_array_inout() {
if (vc_indeg.empty()) calc_deg_inout();
return {vc_indeg, vc_outdeg};
}
int deg(int v) {
if (vc_deg.empty()) calc_deg();
return vc_deg[v];
}
int in_deg(int v) {
if (vc_indeg.empty()) calc_deg_inout();
return vc_indeg[v];
}
int out_deg(int v) {
if (vc_outdeg.empty()) calc_deg_inout();
return vc_outdeg[v];
}
#ifdef FASTIO
void debug() {
print("Graph");
if (!prepared) {
print("frm to cost id");
for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
} else {
print("indptr", indptr);
print("frm to cost id");
FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
}
}
#endif
vc<int> new_idx;
vc<bool> used_e;
// G における頂点 V[i] が、新しいグラフで i になるようにする
// {G, es}
// sum(deg(v)) の計算量になっていて、
// 新しいグラフの n+m より大きい可能性があるので注意
Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
if (len(new_idx) != N) new_idx.assign(N, -1);
int n = len(V);
FOR(i, n) new_idx[V[i]] = i;
Graph<T, directed> G(n);
vc<int> history;
FOR(i, n) {
for (auto&& e: (*this)[V[i]]) {
if (len(used_e) <= e.id) used_e.resize(e.id + 1);
if (used_e[e.id]) continue;
int a = e.frm, b = e.to;
if (new_idx[a] != -1 && new_idx[b] != -1) {
history.eb(e.id);
used_e[e.id] = 1;
int eid = (keep_eid ? e.id : -1);
G.add(new_idx[a], new_idx[b], e.cost, eid);
}
}
}
FOR(i, n) new_idx[V[i]] = -1;
for (auto&& eid: history) used_e[eid] = 0;
G.build();
return G;
}
Graph<T, true> to_directed_tree(int root = -1) {
if (root == -1) root = 0;
assert(!is_directed && prepared && M == N - 1);
Graph<T, true> G1(N);
vc<int> par(N, -1);
auto dfs = [&](auto& dfs, int v) -> void {
for (auto& e: (*this)[v]) {
if (e.to == par[v]) continue;
par[e.to] = v, dfs(dfs, e.to);
}
};
dfs(dfs, root);
for (auto& e: edges) {
int a = e.frm, b = e.to;
if (par[a] == b) swap(a, b);
assert(par[b] == a);
G1.add(a, b, e.cost);
}
G1.build();
return G1;
}
private:
void calc_deg() {
assert(vc_deg.empty());
vc_deg.resize(N);
for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
}
void calc_deg_inout() {
assert(vc_indeg.empty());
vc_indeg.resize(N);
vc_outdeg.resize(N);
for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
}
};
#line 4 "/home/maspy/compro/library/graph/tree.hpp"
// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
using Graph_type = GT;
GT &G;
using WT = typename GT::cost_type;
int N;
vector<int> LID, RID, head, V, parent, VtoE;
vc<int> depth;
vc<WT> depth_weighted;
Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }
void build(int r = 0, bool hld = 1) {
if (r == -1) return; // build を遅延したいとき
N = G.N;
LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
depth.assign(N, -1), depth_weighted.assign(N, 0);
assert(G.is_prepared());
int t1 = 0;
dfs_sz(r, -1, hld);
dfs_hld(r, t1);
}
void dfs_sz(int v, int p, bool hld) {
auto &sz = RID;
parent[v] = p;
depth[v] = (p == -1 ? 0 : depth[p] + 1);
sz[v] = 1;
int l = G.indptr[v], r = G.indptr[v + 1];
auto &csr = G.csr_edges;
// 使う辺があれば先頭にする
for (int i = r - 2; i >= l; --i) {
if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
}
int hld_sz = 0;
for (int i = l; i < r; ++i) {
auto e = csr[i];
if (depth[e.to] != -1) continue;
depth_weighted[e.to] = depth_weighted[v] + e.cost;
VtoE[e.to] = e.id;
dfs_sz(e.to, v, hld);
sz[v] += sz[e.to];
if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
}
}
void dfs_hld(int v, int ×) {
LID[v] = times++;
RID[v] += LID[v];
V[LID[v]] = v;
bool heavy = true;
for (auto &&e: G[v]) {
if (depth[e.to] <= depth[v]) continue;
head[e.to] = (heavy ? head[v] : e.to);
heavy = false;
dfs_hld(e.to, times);
}
}
vc<int> heavy_path_at(int v) {
vc<int> P = {v};
while (1) {
int a = P.back();
for (auto &&e: G[a]) {
if (e.to != parent[a] && head[e.to] == v) {
P.eb(e.to);
break;
}
}
if (P.back() == a) break;
}
return P;
}
int heavy_child(int v) {
int k = LID[v] + 1;
if (k == N) return -1;
int w = V[k];
return (parent[w] == v ? w : -1);
}
int e_to_v(int eid) {
auto e = G.edges[eid];
return (parent[e.frm] == e.to ? e.frm : e.to);
}
int v_to_e(int v) { return VtoE[v]; }
int get_eid(int u, int v) {
if (parent[u] != v) swap(u, v);
assert(parent[u] == v);
return VtoE[u];
}
int ELID(int v) { return 2 * LID[v] - depth[v]; }
int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }
// 目標地点へ進む個数が k
int LA(int v, int k) {
assert(k <= depth[v]);
while (1) {
int u = head[v];
if (LID[v] - k >= LID[u]) return V[LID[v] - k];
k -= LID[v] - LID[u] + 1;
v = parent[u];
}
}
int la(int u, int v) { return LA(u, v); }
int LCA(int u, int v) {
for (;; v = parent[head[v]]) {
if (LID[u] > LID[v]) swap(u, v);
if (head[u] == head[v]) return u;
}
}
int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
int lca(int u, int v) { return LCA(u, v); }
int subtree_size(int v, int root = -1) {
if (root == -1) return RID[v] - LID[v];
if (v == root) return N;
int x = jump(v, root, 1);
if (in_subtree(v, x)) return RID[v] - LID[v];
return N - RID[x] + LID[x];
}
int dist(int a, int b) {
int c = LCA(a, b);
return depth[a] + depth[b] - 2 * depth[c];
}
WT dist_weighted(int a, int b) {
int c = LCA(a, b);
return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
}
// a is in b
bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }
int jump(int a, int b, ll k) {
if (k == 1) {
if (a == b) return -1;
return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
}
int c = LCA(a, b);
int d_ac = depth[a] - depth[c];
int d_bc = depth[b] - depth[c];
if (k > d_ac + d_bc) return -1;
if (k <= d_ac) return LA(a, k);
return LA(b, d_ac + d_bc - k);
}
vc<int> collect_child(int v) {
vc<int> res;
for (auto &&e: G[v])
if (e.to != parent[v]) res.eb(e.to);
return res;
}
vc<int> collect_light(int v) {
vc<int> res;
bool skip = true;
for (auto &&e: G[v])
if (e.to != parent[v]) {
if (!skip) res.eb(e.to);
skip = false;
}
return res;
}
vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
// [始点, 終点] の"閉"区間列。
vc<pair<int, int>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
down.eb(LID[head[v]], LID[v]);
v = parent[head[v]];
} else {
up.eb(LID[u], LID[head[u]]);
u = parent[head[u]];
}
}
if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
reverse(all(down));
up.insert(up.end(), all(down));
return up;
}
// 辺の列の情報 (frm,to,str)
// str = "heavy_up", "heavy_down", "light_up", "light_down"
vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
vc<tuple<int, int, string>> up, down;
while (1) {
if (head[u] == head[v]) break;
if (LID[u] < LID[v]) {
if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
down.eb(parent[v], v, "light_down"), v = parent[v];
} else {
if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
up.eb(u, parent[u], "light_up"), u = parent[u];
}
}
if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
reverse(all(down));
concat(up, down);
return up;
}
vc<int> restore_path(int u, int v) {
vc<int> P;
for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
if (a <= b) {
FOR(i, a, b + 1) P.eb(V[i]);
} else {
FOR_R(i, b, a + 1) P.eb(V[i]);
}
}
return P;
}
// path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
// https://codeforces.com/problemset/problem/500/G
pair<int, int> path_intersection(int a, int b, int c, int d) {
int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
if (x != y) return {x, y};
int z = ac ^ ad ^ cd;
if (x != z) x = -1;
return {x, x};
}
};
#line 5 "main.cpp"
/*
exactly 要素をすこし気を付ける必要がある
N==1 なら M==0 なので何もしない
とにかく各 subtree に対して答となる数列の列を作ってしまう
これだと 3 乗になるが、3 乗で通りそうな制約になっている?
メモリも足りている
根がどこか不明?
*/
void solve() {
LL(N, M);
vc<int> lch(N, -1), rch(N, -1);
vc<int> val(N, -1);
FOR(v, N) {
INT(t);
if (t == 1) {
INT(a, b);
--a, --b;
lch[v] = a, rch[v] = b;
}
if (t == 2) {
INT(x);
val[v] = x;
}
}
vc<int> key;
FOR(v, N) {
if (val[v] != -1) key.eb(val[v]);
}
UNIQUE(key);
FOR(v, N) {
if (val[v] != -1) val[v] = LB(key, val[v]);
}
Graph<int, 1> G(N);
FOR(v, N) {
if (lch[v] != -1) G.add(v, lch[v]);
if (rch[v] != -1) G.add(v, rch[v]);
}
G.build();
int root = [&]() -> int {
FOR(v, N) if (G.in_deg(v) == 0) return v;
assert(0);
return -1;
}();
Tree<decltype(G)> tree(G);
auto dfs = [&](auto& dfs, int v) -> vvc<short> {
if (lch[v] == -1) {
vv(short, ANS, 1, 1);
ANS[0][0] = val[v];
return ANS;
}
vvc<short> L, R;
int c = tree.heavy_child(v);
if (c == lch[v]) {
L = dfs(dfs, lch[v]);
R = dfs(dfs, rch[v]);
} else {
R = dfs(dfs, rch[v]);
L = dfs(dfs, lch[v]);
}
int N1 = len(L[0]);
int N2 = len(R[0]);
int N = N1 + N2;
int K = N + 1;
vv(short, ANS, K, N, 10000);
auto upd = [&](int k, vc<short>& S) -> void {
if (k >= K) return;
assert(len(S) == N);
if (ANS[k] > S) ANS[k] = S;
};
// parity ごとには単調になっている
FOR(a, N1) {
bool bad = 0;
if (a + 2 < N1 && L[a] > L[a + 2]) bad = 1;
if (a - 2 >= 0 && L[a] == L[a - 2]) bad = 1;
int n = (bad ? 1 : N2);
FOR(b, n) {
vc<short> X;
concat(X, L[a]);
concat(X, R[b]);
upd(a + b, X);
}
}
FOR(a, N2) {
bool bad = 0;
if (a + 2 < N2 && R[a] > R[a + 2]) bad = 1;
if (a - 2 >= 0 && R[a] == R[a - 2]) bad = 1;
int n = (bad ? 1 : N1);
FOR(b, n) {
vc<short> X;
concat(X, R[a]);
concat(X, L[b]);
upd(a + b + 1, X);
}
}
FOR(k, K) {
if (k + 2 < K) upd(k + 2, ANS[k]);
}
FOR(k, K) SHOW(v, k, ANS[v]);
return ANS;
};
auto dp = dfs(dfs, root);
vc<int> ANS;
for (auto& x: dp[M]) ANS.eb(key[x]);
print(ANS);
}
signed main() { solve(); }
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3664kb
input:
3 0 1 2 3 2 1 2 2
output:
1 2
result:
ok 2 number(s): "1 2"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3684kb
input:
7 1 1 2 3 1 4 5 1 6 7 2 4 2 2 2 3 2 1
output:
2 4 3 1
result:
ok 4 number(s): "2 4 3 1"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3684kb
input:
7 2 1 2 3 1 4 5 1 6 7 2 4 2 2 2 3 2 1
output:
1 3 4 2
result:
ok 4 number(s): "1 3 4 2"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3588kb
input:
1 0 2 1000000000
output:
1000000000
result:
ok 1 number(s): "1000000000"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3720kb
input:
3 1 1 2 3 2 1 2 2
output:
2 1
result:
ok 2 number(s): "2 1"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3664kb
input:
7 2 1 2 3 1 4 5 1 6 7 2 1 2 2 2 3 2 4
output:
1 2 3 4
result:
ok 4 number(s): "1 2 3 4"
Test #7:
score: 0
Accepted
time: 0ms
memory: 4220kb
input:
999 480 1 3 2 1 4 5 1 6 7 1 9 8 1 10 11 1 13 12 1 14 15 1 16 17 1 19 18 1 21 20 1 23 22 1 25 24 1 27 26 1 28 29 1 30 31 1 33 32 1 35 34 1 37 36 1 38 39 1 41 40 1 42 43 1 45 44 1 46 47 1 48 49 1 51 50 1 52 53 1 55 54 1 56 57 1 58 59 1 61 60 1 62 63 1 64 65 1 67 66 1 69 68 1 71 70 1 73 72 1 74 75 1 76...
output:
34826804 763875883 763875883 763875883 763875883 763875883 763875883 763875883 248820103 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 763875883 7...
result:
ok 500 numbers
Test #8:
score: 0
Accepted
time: 2ms
memory: 4244kb
input:
999 480 1 2 3 1 4 5 1 7 6 1 8 9 1 10 11 1 13 12 1 15 14 1 17 16 1 19 18 1 21 20 1 23 22 1 24 25 1 26 27 1 28 29 1 31 30 1 32 33 1 34 35 1 37 36 1 38 39 1 41 40 1 42 43 1 44 45 1 46 47 1 48 49 1 51 50 1 52 53 1 54 55 1 57 56 1 58 59 1 60 61 1 62 63 1 65 64 1 66 67 1 69 68 1 71 70 1 72 73 1 75 74 1 77...
output:
530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 530024839 ...
result:
ok 500 numbers
Test #9:
score: 0
Accepted
time: 0ms
memory: 4360kb
input:
999 480 1 3 2 1 5 4 1 7 6 1 8 9 1 10 11 1 13 12 1 15 14 1 17 16 1 18 19 1 21 20 1 23 22 1 25 24 1 26 27 1 29 28 1 31 30 1 33 32 1 34 35 1 37 36 1 38 39 1 41 40 1 43 42 1 45 44 1 47 46 1 49 48 1 50 51 1 52 53 1 54 55 1 56 57 1 59 58 1 60 61 1 62 63 1 65 64 1 67 66 1 69 68 1 71 70 1 73 72 1 74 75 1 76...
output:
507922 928353918 51892154 809031414 296508656 801553730 385852006 930053625 95913518 431154803 117002192 187199343 405980569 664093190 478863675 930428963 3440725 490128679 92302056 563992614 27927487 246777697 168388113 922508131 52386784 780998040 438167217 876407248 158186938 633166175 788275543 ...
result:
ok 500 numbers
Test #10:
score: 0
Accepted
time: 2ms
memory: 3952kb
input:
999 480 1 3 2 1 4 5 1 7 6 1 8 9 1 10 11 1 13 12 1 15 14 1 16 17 1 19 18 1 21 20 1 23 22 1 24 25 1 26 27 1 29 28 1 30 31 1 32 33 1 35 34 1 37 36 1 38 39 1 41 40 1 43 42 1 45 44 1 46 47 1 48 49 1 50 51 1 52 53 1 54 55 1 56 57 1 58 59 1 60 61 1 63 62 1 65 64 1 66 67 1 68 69 1 70 71 1 72 73 1 74 75 1 76...
output:
666292 26210483 65023030 95745223 11431606 30237589 40996997 59830702 14512182 24640163 39361368 85684143 17020177 58437715 74457645 91998540 7557034 46923480 16066480 33921131 14512182 83949838 22501176 83949838 15127734 18414338 52979072 81930757 24640163 70913581 72929459 78973167 3687875 4610266...
result:
ok 500 numbers
Test #11:
score: 0
Accepted
time: 2ms
memory: 3896kb
input:
999 480 1 3 2 1 4 5 1 7 6 1 9 8 1 10 11 1 13 12 1 15 14 1 16 17 1 18 19 1 20 21 1 23 22 1 24 25 1 27 26 1 29 28 1 30 31 1 33 32 1 34 35 1 37 36 1 39 38 1 40 41 1 42 43 1 44 45 1 47 46 1 48 49 1 50 51 1 52 53 1 55 54 1 56 57 1 59 58 1 60 61 1 62 63 1 64 65 1 66 67 1 68 69 1 70 71 1 72 73 1 75 74 1 77...
output:
874376 19021636 10912872 49114704 21454471 94310772 60086613 88323254 20181141 62658098 54568372 64872279 21454471 30659919 73483837 98385133 12300384 74080822 54568372 100102768 29770805 62658098 33159023 62908008 33159023 98943188 52580720 64872279 58787422 98644936 73687255 98385133 10912872 9838...
result:
ok 500 numbers
Test #12:
score: 0
Accepted
time: 23ms
memory: 5220kb
input:
905 52 1 3 2 2 25780328 1 4 5 2 84996992 1 6 7 2 43060692 1 8 9 2 58356233 1 11 10 2 48172306 1 12 13 2 94654986 1 14 15 2 66085196 1 17 16 2 43141873 1 18 19 2 58356233 1 21 20 2 58356233 1 22 23 2 64124892 1 24 25 2 55464563 1 27 26 2 46324683 1 29 28 2 78919648 1 30 31 2 13379324 1 32 33 2 960564...
output:
612429 612429 11385745 15524596 27354220 30826255 44403070 95193352 30760083 84996992 87443977 43060692 49958425 13964121 91042474 36461317 15704020 17411083 64017133 36129702 78978485 64017133 17411083 36057170 100691869 58356233 19600883 97205832 56442997 15704020 11168414 91042474 36057170 789196...
result:
ok 453 numbers
Test #13:
score: 0
Accepted
time: 3ms
memory: 4276kb
input:
973 29 1 15 2 1 12 3 1 9 4 1 5 8 1 7 6 2 962417250 2 863548670 2 800966093 1 10 11 2 37461993 2 868171711 1 13 14 2 964174105 2 677204824 1 16 423 1 310 17 1 18 191 1 19 62 1 29 20 1 21 28 1 27 22 1 23 26 1 25 24 2 365120660 2 231292756 2 592806005 2 874105957 2 781723044 1 45 30 1 36 31 1 32 35 1 3...
output:
2675037 261767176 248501239 345976036 622219661 737137787 956443156 230208508 491670229 754288296 340857675 508137398 362818049 409851160 870728354 794405031 484178348 431303115 22375372 34846342 687160982 196499503 730262600 485680065 739755993 161591308 468293073 459956110 140991714 726201872 1492...
result:
ok 487 numbers
Test #14:
score: 0
Accepted
time: 3ms
memory: 4300kb
input:
951 148 1 677 2 1 62 3 1 47 4 1 32 5 1 31 6 1 7 12 1 11 8 1 10 9 2 151747858 2 8073627 2 884973114 1 13 22 1 14 21 1 15 20 1 17 16 2 139411516 1 18 19 2 449838238 2 5170971 2 627498389 2 868252445 1 24 23 2 317075494 1 28 25 1 26 27 2 490832736 2 714844981 1 29 30 2 771243846 2 315749038 2 957329344...
output:
659497 184554417 587672201 274768649 699968317 178766364 543809986 530978880 536461261 557219868 652279850 674934319 661534083 907282244 620212281 541213699 822252327 959188634 6937845 289752424 737160308 266639809 130898365 408815070 773575808 875783850 62361039 515918403 104430174 430469282 463808...
result:
ok 476 numbers