QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#68487#5106. Islands from the Skynocriz#AC ✓11ms3988kbC++1711.0kb2022-12-16 20:36:302022-12-16 20:36:33

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2022-12-16 20:36:33]
  • 评测
  • 测评结果:AC
  • 用时:11ms
  • 内存:3988kb
  • [2022-12-16 20:36:30]
  • 提交

answer

//    苔花如米小,也学牡丹开。 
//    Zhikun Wang (nocriz)
//    敢问路在何方 路在脚下

#include <bits/stdc++.h>
using namespace std;
 
using ll = long long; using db = long double; using str = string;
using pi = pair<int,int>; using pl = pair<ll,ll>; using pd = pair<db,db>;
using vi = vector<int>; using vb = vector<bool>; using vl = vector<ll>;
using vd = vector<db>; using vs = vector<str>;
using vpi = vector<pi>; using vpl = vector<pl>; using vpd = vector<pd>;

#define tcT template<class T
#define tcTU tcT, class U
tcT> using V = vector<T>;  tcT, size_t SZ> using AR = array<T,SZ>; tcT> using PR = pair<T,T>;

#define mp make_pair 
#define f first
#define s second
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend() 
#define sor(x) sort(all(x)) 
#define rsz resize
#define ins insert 
#define ft front()
#define bk back()
#define pb push_back
#define eb emplace_back 
#define pf push_front
#define lb lower_bound
#define ub upper_bound

tcT> int lwb(V<T>& a, const T& b) { return int(lb(all(a),b)-bg(a)); }

#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define each(a,x) for (auto& a: x)

const int MOD = 998244353;
const ll INF = 1e18; // not too close to LLONG_MAX
const db PI = acos((db)-1);
const int dx[4] = {1,0,-1,0}, dy[4] = {0,1,0,-1}; // for every grid problem!!
mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); 
template<class T> using pqg = priority_queue<T,vector<T>,greater<T>>;

constexpr int pct(int x) { return __builtin_popcount(x); } // # of bits set
constexpr int bits(int x) { return x == 0 ? 0 : 31-__builtin_clz(x); } // floor(log2(x)) 
constexpr int p2(int x) { return 1<<x; }
constexpr int msk2(int x) { return p2(x)-1; }
ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up
ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down
tcT> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; }
tcT> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; }
tcTU> T fstTrue(T lo, T hi, U f) { hi ++; assert(lo <= hi); while (lo < hi) { T mid = lo+(hi-lo)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; }
tcTU> T lstTrue(T lo, T hi, U f) { lo --; assert(lo <= hi); while (lo < hi) { T mid = lo+(hi-lo+1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; }
tcT> void remDup(vector<T>& v) { sort(all(v)); v.erase(unique(all(v)),end(v)); }
tcTU> void erase(T& t, const U& u) { auto it = t.find(u); assert(it != end(t)); t.erase(it); } 
#define tcTUU tcT, class ...U
inline namespace Helpers { tcT, class = void> struct is_iterable : false_type {}; tcT> struct is_iterable<T, void_t<decltype(begin(declval<T>())), decltype(end(declval<T>())) > > : true_type {}; tcT> constexpr bool is_iterable_v = is_iterable<T>::value; tcT, class = void> struct is_readable : false_type {}; tcT> struct is_readable<T, typename std::enable_if_t< is_same_v<decltype(cin >> declval<T&>()), istream&> > > : true_type {}; tcT> constexpr bool is_readable_v = is_readable<T>::value; tcT, class = void> struct is_printable : false_type {}; tcT> struct is_printable<T, typename std::enable_if_t< is_same_v<decltype(cout << declval<T>()), ostream&> > > : true_type {}; tcT> constexpr bool is_printable_v = is_printable<T>::value;}
inline namespace Input { tcT> constexpr bool needs_input_v = !is_readable_v<T> && is_iterable_v<T>; tcTUU> void re(T& t, U&... u); tcTU> void re(pair<T,U>& p); tcT> typename enable_if<is_readable_v<T>,void>::type re(T& x) { cin >> x; } tcT> void re(complex<T>& c) { T a,b; re(a,b); c = {a,b}; } tcT> typename enable_if<needs_input_v<T>,void>::type re(T& i); tcTU> void re(pair<T,U>& p) { re(p.f,p.s); } tcT> typename enable_if<needs_input_v<T>,void>::type re(T& i) { each(x,i) re(x); } tcTUU> void re(T& t, U&... u) { re(t); re(u...); }}
inline namespace ToString {  tcT> constexpr bool needs_output_v = !is_printable_v<T> && is_iterable_v<T>;  tcT> typename enable_if<is_printable_v<T>,str>::type ts(T v) {   stringstream ss; ss << fixed << setprecision(15) << v;   return ss.str(); }  tcT> str bit_vec(T t) {   str res = "{"; F0R(i,sz(t)) res += ts(t[i]);   res += "}"; return res; }  str ts(V<bool> v) { return bit_vec(v); }  template<size_t SZ> str ts(bitset<SZ> b) { return bit_vec(b); }   tcTU> str ts(pair<T,U> p);  tcT> typename enable_if<needs_output_v<T>,str>::type ts(T v);   tcTU> str ts(pair<T,U> p) { return "("+ts(p.f)+", "+ts(p.s)+")"; }  tcT> typename enable_if<is_iterable_v<T>,str>::type ts_sep(T v, str sep) {   bool fst = 1; str res = "";   for (const auto& x: v) {    if (!fst) res += sep;    fst = 0; res += ts(x);   }   return res;  }  tcT> typename enable_if<needs_output_v<T>,str>::type ts(T v) {   return "{"+ts_sep(v,", ")+"}"; }  template<int, class T> typename enable_if<!needs_output_v<T>,vs>::type     ts_lev(const T& v) { return {ts(v)}; }  template<int lev, class T> typename enable_if<needs_output_v<T>,vs>::type     ts_lev(const T& v) {   if (lev == 0 || !sz(v)) return {ts(v)};   vs res;   for (const auto& t: v) {    if (sz(res)) res.bk += ",";    vs tmp = ts_lev<lev-1>(t);    res.ins(end(res),all(tmp));   }   F0R(i,sz(res)) {    str bef = " "; if (i == 0) bef = "{";    res[i] = bef+res[i];   }   res.bk += "}";   return res;  } }
inline namespace Output { template<class T> void pr_sep(ostream& os, str, const T& t) { os << ts(t); } template<class T, class... U> void pr_sep(ostream& os, str sep, const T& t, const U&... u) {pr_sep(os,sep,t); os << sep; pr_sep(os,sep,u...); } template<class ...T> void pr(const T&... t) { pr_sep(cout,"",t...); } void ps() { cout << "\n"; } template<class ...T> void ps(const T&... t) { pr_sep(cout," ",t...); ps(); } template<class ...T> void dbg_out(const T&... t) { pr_sep(cerr," | ",t...); cerr << endl; }void loc_info(int line, str names) { cerr << "Line(" << line << ") -> [" << names << "]: "; } template<int lev, class T> void dbgl_out(const T& t) { cerr << "\n\n" << ts_sep(ts_lev<lev>(t),"\n") << "\n" << endl; } }
#ifdef LOCAL
	#define dbg(...) loc_info(__LINE__,#__VA_ARGS__), dbg_out(__VA_ARGS__)
	#define dbgl(lev,x) loc_info(__LINE__,#x), dbgl_out<lev>(x)
#else 
	#define dbg(...) 0
	#define dbgl(lev,x) 0
#endif
void decrement() {} // subtract one from each
tcTUU> void decrement(T& t, U&... u) { --t; decrement(u...); }
#define ints(...) int __VA_ARGS__; re(__VA_ARGS__);
#define int1(...) ints(__VA_ARGS__); decrement(__VA_ARGS__);

template<int MOD, int RT> struct mint {
	static const int mod = MOD;
	static constexpr mint rt() { return RT; } // primitive root for FFT
	int v; explicit operator int() const { return v; } // explicit -> don't silently convert to int
	mint() { v = 0; }
	mint(ll _v) { v = int((-MOD < _v && _v < MOD) ? _v : _v % MOD);
		if (v < 0) v += MOD; }
	friend bool operator==(const mint& a, const mint& b) { 
		return a.v == b.v; }
	friend bool operator!=(const mint& a, const mint& b) { 
		return !(a == b); }
	friend bool operator<(const mint& a, const mint& b) { 
		return a.v < b.v; }
	friend void re(mint& a) { ll x; re(x); a = mint(x); }
	friend str ts(mint a) { return ts(a.v); }
   
	mint& operator+=(const mint& m) { 
		if ((v += m.v) >= MOD) v -= MOD; 
		return *this; }
	mint& operator-=(const mint& m) { 
		if ((v -= m.v) < 0) v += MOD; 
		return *this; }
	mint& operator*=(const mint& m) { 
		v = int((ll)v*m.v%MOD); return *this; }
	mint& operator/=(const mint& m) { return (*this) *= inv(m); }
	friend mint pow(mint a, ll p) {
		mint ans = 1; assert(p >= 0);
		for (; p; p /= 2, a *= a) if (p&1) ans *= a;
		return ans; }
	friend mint inv(const mint& a) { assert(a.v != 0); 
		return pow(a,MOD-2); }
		
	mint operator-() const { return mint(-v); }
	mint& operator++() { return *this += 1; }
	mint& operator--() { return *this -= 1; }
	friend mint operator+(mint a, const mint& b) { return a += b; }
	friend mint operator-(mint a, const mint& b) { return a -= b; }
	friend mint operator*(mint a, const mint& b) { return a *= b; }
	friend mint operator/(mint a, const mint& b) { return a /= b; }
};

typedef mint<MOD,5> mi; // 5 is primitive root for both common mods
typedef vector<mi> vmi;
typedef pair<mi,mi> pmi;
typedef vector<pmi> vpmi;

vmi facs_1926 = {1};
mi fac(int n){
	if(n<0)return 0;
	while(facs_1926.size()<n+10)
		facs_1926.pb(facs_1926.back()*facs_1926.size());
	return facs_1926[n];
}

mi C(int n,int m){
	if(n<0 || m<0 || n-m<0)return 0;
	return fac(n)/fac(m)/fac(n-m);
}

template <class T> int sgn(T x) { return (x > 0) - (x < 0); }
template<class T>
struct Point {
	typedef Point P;
	T x, y;
	explicit Point(T x=0, T y=0) : x(x), y(y) {}
	bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }
	bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
	P operator+(P p) const { return P(x+p.x, y+p.y); }
	P operator-(P p) const { return P(x-p.x, y-p.y); }
	P operator*(T d) const { return P(x*d, y*d); }
	P operator/(T d) const { return P(x/d, y/d); }
	T dot(P p) const { return x*p.x + y*p.y; }
	T cross(P p) const { return x*p.y - y*p.x; }
	T cross(P a, P b) const { return (a-*this).cross(b-*this); }
	T dist2() const { return x*x + y*y; }
	double dist() const { return sqrt((double)dist2()); }
	// angle to x-axis in interval [-pi, pi]
	double angle() const { return atan2(y, x); }
	P unit() const { return *this/dist(); } // makes dist()=1
	P perp() const { return P(-y, x); } // rotates +90 degrees
	P normal() const { return perp().unit(); }
	// returns point rotated 'a' radians ccw around the origin
	P rotate(double a) const {
		return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
	friend ostream& operator<<(ostream& os, P p) {
		return os << "(" << p.x << "," << p.y << ")"; }
};

typedef Point<ll> P;
vector<P> island[110];

P pa[110], pb[110];
db ha[110], hb[110];

int n,m;

template<class P>
db lineDist(const P& a, const P& b, const P& p) {
	return abs((db)(b-a).cross(p-a)/(b-a).dist());
}

int cok[110];

bool isok(db c){
	
	memset(cok,0,sizeof(cok));

	db tt = tanl(c);
	
	for(int i=0;i<m;i++){
		P s = pa[i], t = pb[i], l = t-s;
		ll lim = l.dot(l);
		db st = ha[i], dif = hb[i] - ha[i];
		for(int j=0;j<n;j++){
			if(cok[j])continue;
			int cc = 1;
			for(auto ct:island[j]){
				ll cv = (ct-s).dot(l);
				if(cv < 0 || cv > lim) {
					cc = 0;
					break;
				}
				db clim = tt*(st + dif*cv/lim);
				if(clim < lineDist(s, t, ct)) {
					cc = 0;
					break;
				}
			}
			if(cc){
				cok[j] = 1;
			}
		}

	}

	for(int i = 0;i<n;i++){
		if(!cok[i]) return false;
	}

	return true;
}

int main() {
	re(n,m);
	for (int i=0;i<n;i++) {
		int cn;
		re(cn);
		while(cn--){
			P np;
			re(np.x,np.y);
			island[i].pb(np);
		}
	}

	for (int j=0;j<m;j++) {
		re (pa[j].x, pa[j].y, ha[j], pb[j].x, pb[j].y, hb[j]);
	}

	db l = 0;
	db r = atan(100000000);

	if(!isok(r)){
		ps("impossible");
		return 0;
	}

	for(int i=0;i<30;i++){
		db mid = (l+r)/2;
		if(isok(mid)){
			r = mid;
		} else {
			l = mid;
		}
	}
	ps(l*180/PI);
	return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 3ms
memory: 3756kb

input:

1 1
3
-5 0
5 0
0 5
-10 10 10 10 10 10

output:

44.999999964978196

result:

ok 

Test #2:

score: 0
Accepted
time: 1ms
memory: 3628kb

input:

1 1
3
-5 0
5 0
0 5
-10 0 10 10 0 10

output:

26.565051123882210

result:

ok 

Test #3:

score: 0
Accepted
time: 2ms
memory: 3788kb

input:

1 1
3
-5 0
5 0
0 5
0 10 10 10 0 10

output:

46.686143326451754

result:

ok 

Test #4:

score: 0
Accepted
time: 0ms
memory: 3764kb

input:

1 1
3
-5 0
5 0
0 5
0 10 5 10 0 10

output:

59.491041100900526

result:

ok 

Test #5:

score: 0
Accepted
time: 0ms
memory: 3640kb

input:

1 1
3
-5 0
5 0
0 5
0 10 20 -10 0 10

output:

31.219698364467343

result:

ok 

Test #6:

score: 0
Accepted
time: 2ms
memory: 3620kb

input:

1 3
3
-5 0
5 0
0 5
-10 0 25 10 0 20
-5 10 10 10 -5 20
-4 1 100 5 10 100

output:

12.528807692562622

result:

ok 

Test #7:

score: 0
Accepted
time: 2ms
memory: 3788kb

input:

1 2
4
0 0
20 0
20 40
0 40
-10 30 30 30 30 30
-10 10 30 30 10 30

output:

44.999999964978196

result:

ok 

Test #8:

score: 0
Accepted
time: 2ms
memory: 3744kb

input:

1 4
4
0 0
20 0
20 40
0 40
-10 30 30 30 30 30
-10 20 30 30 20 30
-10 10 30 30 10 30
10 -10 30 10 50 30

output:

18.434948757276955

result:

ok 

Test #9:

score: 0
Accepted
time: 1ms
memory: 3680kb

input:

1 2
4
0 0
40 0
40 40
0 40
10 10 10 20 20 20
30 10 10 10 30 20

output:

impossible

result:

ok 

Test #10:

score: 0
Accepted
time: 2ms
memory: 3560kb

input:

1 3
4
0 0
20 0
20 40
0 40
-10 30 30 15 30 30
5 30 30 30 30 30
1 50 30 21 50 30

output:

impossible

result:

ok 

Test #11:

score: 0
Accepted
time: 2ms
memory: 3628kb

input:

1 1
4
0 0
40 0
40 40
0 40
-100 -100 20 100 100 10

output:

63.665752135965063

result:

ok 

Test #12:

score: 0
Accepted
time: 2ms
memory: 3720kb

input:

1 4
4
-10 -10
10 -10
10 10
-10 10
-100 0 10 100 0 10
0 100 10 0 -100 10
50 50 15 -50 -50 15
-50 50 15 50 -50 15

output:

43.313856603504638

result:

ok 

Test #13:

score: 0
Accepted
time: 2ms
memory: 3784kb

input:

1 100
100
822286 0
856789 53904
986567 124632
629039 119995
732157 187986
691605 224716
728650 288493
591087 278144
801573 440668
425257 269876
614456 446428
424157 350893
645680 606334
406524 432904
545628 659551
359831 495265
367048 578376
251435 457360
319990 680014
336526 849968
214009 658652
23...

output:

53.790638374449566

result:

ok 

Test #14:

score: 0
Accepted
time: 8ms
memory: 3840kb

input:

100 1
100
461002 481444
460618 481480
460584 481512
460833 481595
460670 481605
460545 481607
460942 481801
460526 481672
460912 481923
460765 481903
460505 481781
460430 481766
460589 481959
460593 482032
460477 481972
460440 481994
460510 482183
460285 481888
460387 482179
460246 481963
460303 482...

output:

impossible

result:

ok 

Test #15:

score: 0
Accepted
time: 11ms
memory: 3868kb

input:

100 1
100
461002 481444
460618 481480
460584 481512
460833 481595
460670 481605
460545 481607
460942 481801
460526 481672
460912 481923
460765 481903
460505 481781
460430 481766
460589 481959
460593 482032
460477 481972
460440 481994
460510 482183
460285 481888
460387 482179
460246 481963
460303 482...

output:

33.690795553570072

result:

ok 

Test #16:

score: 0
Accepted
time: 9ms
memory: 3952kb

input:

100 1
100
461002 481444
460618 481480
460584 481512
460833 481595
460670 481605
460545 481607
460942 481801
460526 481672
460912 481923
460765 481903
460505 481781
460430 481766
460589 481959
460593 482032
460477 481972
460440 481994
460510 482183
460285 481888
460387 482179
460246 481963
460303 482...

output:

66.402796633628697

result:

ok 

Test #17:

score: 0
Accepted
time: 2ms
memory: 3832kb

input:

100 100
100
461002 481444
460618 481480
460584 481512
460833 481595
460670 481605
460545 481607
460942 481801
460526 481672
460912 481923
460765 481903
460505 481781
460430 481766
460589 481959
460593 482032
460477 481972
460440 481994
460510 482183
460285 481888
460387 482179
460246 481963
460303 4...

output:

4.189001593147814

result:

ok 

Test #18:

score: 0
Accepted
time: 10ms
memory: 3988kb

input:

100 11
100
461002 481444
460618 481480
460584 481512
460833 481595
460670 481605
460545 481607
460942 481801
460526 481672
460912 481923
460765 481903
460505 481781
460430 481766
460589 481959
460593 482032
460477 481972
460440 481994
460510 482183
460285 481888
460387 482179
460246 481963
460303 48...

output:

32.411928445513649

result:

ok 

Test #19:

score: 0
Accepted
time: 7ms
memory: 3844kb

input:

100 90
100
461002 481444
460618 481480
460584 481512
460833 481595
460670 481605
460545 481607
460942 481801
460526 481672
460912 481923
460765 481903
460505 481781
460430 481766
460589 481959
460593 482032
460477 481972
460440 481994
460510 482183
460285 481888
460387 482179
460246 481963
460303 48...

output:

5.575448918983496

result:

ok 

Extra Test:

score: 0
Extra Test Passed