QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#67949#621. 多项式指数函数alpha1022100 ✓615ms51176kbC++2328.8kb2022-12-13 16:47:262022-12-13 16:47:28

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2022-12-13 16:47:28]
  • 评测
  • 测评结果:100
  • 用时:615ms
  • 内存:51176kb
  • [2022-12-13 16:47:26]
  • 提交

answer

#include <bits/stdc++.h>

using ll = long long;

using namespace std;

const int mod = 998244353, K = 23, Root = 31;
int norm(int x) { return x >= mod ? x - mod : x; }
int reduce(int x) { return x < 0 ? x + mod : x; }
int neg(int x) { return x ? mod - x : 0; }
int quo2(int x) { return (x + (x & 1 ? mod : 0)) >> 1; }
void add(int &x, int y) { if ((x += y - mod) < 0) x += mod; }
void sub(int &x, int y) { if ((x -= y) < 0) x += mod; }
void fam(int &x, int y, int z) { x = (x + (ll)y * z) % mod; }
int mpow(int a, int b) {
  int ret = 1;
  for (; b; b >>= 1) {
    if (b & 1) ret = (ll)ret * a % mod;
    a = (ll)a * a % mod;
  }
  return ret;
}

const int BRUTE_N2_LIMIT = 50;

struct NumberTheory {
  typedef pair<int, int> P2_Field;
  mt19937 rng;
  NumberTheory(): rng(chrono::steady_clock::now().time_since_epoch().count()) {}
  void exGcd(int a, int b, int &x, int &y) {
    if (!b) {
      x = 1, y = 0;
      return;
    }
    exGcd(b, a % b, y, x), y -= a / b * x;
  }
  int inv(int a, int p = mod) {
    int x, y;
    exGcd(a, p, x, y);
    if (x < 0) x += p;
    return x;
  }
  template<class Integer>
  bool quadRes(Integer a, Integer b) {
    if (a <= 1) return 1;
    while (a % 4 == 0) a /= 4;
    if (a % 2 == 0) return (b % 8 == 1 || b % 8 == 7) == quadRes(a / 2, b);
    return ((a - 1) % 4 == 0 || (b - 1) % 4 == 0) == quadRes(b % a, a);
  }
  int sqrt(int x, int p = mod) {
    if (p == 2 || x <= 1) return x;
    int w, v, k = (p + 1) / 2;
    do w = rng() % p;
    while (quadRes(v = ((ll)w * w - x + p) % p, p));
    P2_Field res(1, 0), a(w, 1);
    for (; k; k >>= 1) {
      if (k & 1)
        res = P2_Field(
        ((ll)res.first * a.first + (ll)res.second * a.second % p * v) % p,
        ((ll)res.first * a.second + (ll)res.second * a.first) % p
        );
      a = P2_Field(((ll)a.first * a.first + (ll)a.second * a.second % p * v) % p, 2LL * a.first * a.second % p);
    }
    return min(res.first, p - res.first);
  }
} nt;

namespace Simple {
  int n = 1;
  vector<int> fac({1, 1}), ifac({1, 1}), inv({0, 1});
  void build(int m) {
    n = m;
    fac.resize(n + 1), ifac.resize(n + 1), inv.resize(n + 1);
    inv[1] = 1;
    for (int i = 2; i <= n; ++i) inv[i] = (ll)(mod - mod / i) * inv[mod % i] % mod;
    fac[0] = ifac[0] = 1;
    for (int i = 1; i <= n; ++i) fac[i] = (ll)fac[i - 1] * i % mod, ifac[i] = (ll)ifac[i - 1] * inv[i] % mod;
  }
  void check(int k) {
    int m = n;
    if (k > m) {
      while (k > m) m <<= 1;
      build(m);
    }
  }
  int gfac(int k) {
    check(k);
    return fac[k];
  }
  int gifac(int k) {
    check(k);
    return ifac[k];
  }
  int ginv(int k) {
    check(k);
    return inv[k];
  }
}

struct SimpleSequence {
  function<int(int)> func;
  SimpleSequence(const function<int(int)> &func): func(func) {}
  int operator[](int k) const { return func(k); }
} gfac(Simple::gfac), gifac(Simple::gifac), ginv(Simple::ginv);

int binom(int n, int m) {
  if (m > n || m < 0) return 0;
  return (ll)gfac[n] * gifac[m] % mod * gifac[n - m] % mod;
}

namespace NTT {
  int L = -1;
  vector<int> root;
  void init(int l) {
    L = l;
    root.resize((1 << L) + 1);
    int n = 1 << L, *w = root.data();
    w[0] = 1, w[1 << L] = mpow(Root, 1 << (K - 2 - L));
    for (int i = L; i; --i) w[1 << (i - 1)] = (ll)w[1 << i] * w[1 << i] % mod;
    for (int i = 1; i < n; ++i) w[i] = (ll)w[i & (i - 1)] * w[i & -i] % mod;
  }
  void DIF(int *a, int l) {
    int n = 1 << l;
    for (int len = n >> 1; len; len >>= 1)
      for (int *j = a, *o = root.data(); j != a + n; j += len << 1, ++o)
        for (int *k = j; k != j + len; ++k) {
          int r = (ll)*o * k[len] % mod;
          k[len] = reduce(*k - r), add(*k, r);
        }
  }
  void DIT(int *a, int l) {
    int n = 1 << l;
    for (int len = 1; len < n; len <<= 1)
      for (int *j = a, *o = root.data(); j != a + n; j += len << 1, ++o)
        for (int *k = j; k != j + len; ++k) {
          int r = norm(*k + k[len]);
          k[len] = (ll)*o * (*k - k[len] + mod) % mod, *k = r;
        }
  }
  void fft(int *a, int lgn, int d = 1) {
    if (L < lgn) init(lgn);
    int n = 1 << lgn;
    if (d == 1) DIF(a, lgn);
    else {
      DIT(a, lgn), reverse(a + 1, a + n);
      int nInv = mod - (mod - 1) / n;
      for (int i = 0; i < n; ++i) a[i] = (ll)a[i] * nInv % mod;
    }
  }
}

struct poly {
  vector<int> a;
  poly(ll v = 0): a(1) {
    if ((v %= mod) < 0) v += mod;
    a[0] = v;
  }
  poly(const poly &o): a(o.a) {}
  poly(const vector<int> &o): a(o) {}
  poly(initializer_list<int> o): a(o) {}
  operator vector<int>() const { return a; }
  int operator[](int k) const { return k < a.size() ? a[k] : 0; }
  int &operator[](int k) {
    if (k >= a.size()) a.resize(k + 1);
    return a[k];
  }
  int deg() const { return (int)a.size() - 1; }
  void redeg(int d) { a.resize(d + 1); }
  int size() const { return a.size(); }
  void resize(int s) { a.resize(s); }
  poly slice(int d) const {
    if (d < a.size()) return vector<int>(a.begin(), a.begin() + d + 1);
    vector<int> ret = a;
    ret.resize(d + 1);
    return ret;
  }
  poly shift(int k) const {
    if (size() + k <= 0) return 0;
    vector<int> ret(size() + k);
    for (int i = max(0, k); i < ret.size(); ++i) ret[i] = a[i - k];
    return ret;
  }
  int eval(int x) const {
    int ret = 0;
    for (int i = deg(); i >= 0; --i)
      ret = ((ll)ret * x + a[i]) % mod;
    return ret;
  }
  int *base() { return a.data(); }
  const int *base() const { return a.data(); }
  poly println(FILE *fp = stdout) const {
    for (int i = 0; i < a.size(); ++i) fprintf(fp, "%d%c", a[i], " \n"[i == a.size() - 1]);
    return *this;
  }

  poly &operator+=(const poly &o) {
    if (o.size() > a.size()) a.resize(o.size());
    for (int i = 0; i < o.size(); ++i) add(a[i], o[i]);
    return *this;
  }
  poly operator+(const poly &o) const {
    poly ret(a);
    ret += o;
    return ret;
  }
  poly operator-() const {
    poly ret = a;
    for (int i = 0; i < a.size(); ++i) ret[i] = neg(ret[i]);
    return ret;
  }
  poly &operator-=(const poly &o) { return operator+=(-o); }
  poly operator-(const poly &o) { return operator+(-o); }
  poly operator*(const poly &) const;
  poly operator/(const poly &) const;
  poly operator%(const poly &) const;
  poly &operator*=(const poly &o) {
    *this = operator*(o);
    return *this;
  }
  poly &operator/=(const poly &o) {
    *this = operator/(o);
    return *this;
  }
  poly &operator%=(const poly &o) {
    *this = operator%(o);
    return *this;
  }
  poly deriv() const;
  poly integ() const;
  poly inv() const;
  poly sqrt() const;
  poly ln() const;
  poly exp() const;
  poly srcExp() const;
  pair<poly, poly> sqrti() const;
  pair<poly, poly> expi() const;
  poly quo(const poly &) const;
  pair<poly, poly> iquo() const;
  pair<poly, poly> div(const poly &) const;
  poly taylor(int k) const;
  poly pow(int k) const;
  poly exp(int k) const;
};

poly zeroes(int d) { return vector<int>(d + 1); }

namespace NTT {
  void fft(poly &a, int lgn, int d = 1) { fft(a.base(), lgn, d); }
}

using NTT::fft;

struct SemiRelaxedConvolution {
  static const int LG = 19;
  static const int B = 16;
  void run(int *f, const int *g, int n, const function<void(int)> &relax) {
    vector<vector<int>> save(LG + 1);
    function<void(int, int)> divideConquer = [&](int l, int r) {
      if (r - l <= BRUTE_N2_LIMIT) {
        for (int i = l + 1; i <= r; ++i) {
          for (int j = l; j < i; ++j) fam(f[i], f[j], g[i - j]);
          relax(i);
        }
        return;
      }
      int d = (r - l) / B + 1, lgd = 0, lg;
      while ((1 << lgd) <= d * 2) ++lgd;
      d = (1 << (lgd - 1)) - 1, lg = (r - l + d - 1) / d;

      vector<int> dft = save[lgd];
      dft.resize(lg << (lgd + 1));
      for (int i = lg << lgd; i < (lg << (lgd + 1)); ++i) dft[i] = 0;
      int ef = lg;
      for (int i = 0; i < lg; ++i) {
        if ((i << lgd) < save[lgd].size()) continue;
        if ((i + 2) * d >= l) --ef;
        for (int j = 0; j <= d * 2; ++j) dft[(i << lgd) + j] = g[i * d + j];
        fft(dft.data() + (i << lgd), lgd);
      }
      if (save[lgd].size() < (ef << lgd)) save[lgd] = vector<int>(dft.begin(), dft.begin() + (ef << lgd));
      for (int i = 0; i < lg; ++i) {
        if (i) fft(dft.data() + ((lg + i) << lgd), lgd, -1);
        for (int j = 1; j <= min(d, r - l - i * d); ++j) add(f[l + i * d + j], dft[((lg + i) << lgd) + d + j]);
        divideConquer(l + i * d, min(l + (i + 1) * d, r));
        if (i + 1 < lg) {
          for (int j = 0; j < d; ++j) dft[((lg + i) << lgd) + j] = f[l + i * d + j];
          for (int j = d; j < (1 << lgd); ++j) dft[((lg + i) << lgd) + j] = 0;
          fft(dft.data() + ((lg + i) << lgd), lgd);
        }
        for (int j = i + 1; j < lg; ++j)
          for (int k = 0; k < (1 << lgd); ++k)
            fam(dft[((lg + j) << lgd) + k], dft[((j - i - 1) << lgd) + k], dft[((lg + i) << lgd) + k]);
      }
    };
    relax(0), divideConquer(0, n);
  }
} src;

poly poly::srcExp() const {
  int n = deg();
  poly f, g;
  f.redeg(n), g.redeg(n);
  for (int i = 0; i <= n; ++i) g[i] = (ll)a[i] * i % mod;
  src.run(f.base(), g.base(), n, [&](int i) {
    if (i == 0) f[i] = 1;
    else f[i] = (ll)f[i] * ginv[i] % mod;
  });
  return f;
}

struct Newton {
  void inv(const poly &f, const poly &dftf, poly &g, const poly &dftg, int t) {
    int n = 1 << t;
    poly prod = dftf;
    for (int i = 0; i < (n << 1); ++i) prod[i] = (ll)prod[i] * dftg[i] % mod;
    fft(prod, t + 1, -1);
    memset(prod.base(), 0, sizeof(int) << t);
    fft(prod, t + 1);
    for (int i = 0; i < (n << 1); ++i) prod[i] = (ll)prod[i] * dftg[i] % mod;
    fft(prod, t + 1, -1);
    for (int i = 0; i < n; ++i) prod[i] = 0;
    g -= prod;
  }
  void inv(const poly &f, const poly &dftf, poly &g, int t) {
    poly dftg(g);
    dftg.resize(2 << t);
    fft(dftg, t + 1);
    inv(f, dftf, g, dftg, t);
  }
  void inv(const poly &f, poly &g, int t) {
    poly dftf(f), dftg(g);
    dftf.resize(2 << t), dftg.resize(2 << t);
    fft(dftf, t + 1), fft(dftg, t + 1);
    inv(f, dftf, g, dftg, t);
  }
  void sqrt(const poly &f, poly &g, poly &dftg, poly &h, int t) {
    for (int i = 0; i < (1 << t); ++i) dftg[i] = (ll)dftg[i] * dftg[i] % mod;
    fft(dftg, t, -1);
    dftg -= f;
    for (int i = 0; i < (1 << t); ++i) add(dftg[i | (1 << t)], dftg[i]), dftg[i] = 0;
    fft(dftg, t + 1);
    poly tmp = h;
    tmp.resize(2 << t);
    fft(tmp, t + 1);
    for (int i = 0; i < (2 << t); ++i) tmp[i] = (ll)tmp[i] * dftg[i] % mod;
    fft(tmp, t + 1, -1);
    memset(tmp.base(), 0, sizeof(int) << t);
    g -= tmp * ginv[2];
  }
  void exp(const poly &f, poly &g, poly &dftg, poly &h, int t) {
    poly dfth = h;
    fft(dfth, t);
    poly dg = g.deriv().slice((1 << t) - 1);
    fft(dg, t);
    poly tmp = zeroes((1 << t) - 1);
    for (int i = 0; i < (1 << t); ++i) tmp[i] = (ll)dftg[i] * dfth[i] % mod, dg[i] = (ll)dg[i] * dfth[i] % mod;
    fft(tmp, t, -1), fft(dg, t, -1);
    sub(tmp[0], 1);
    dg.resize(2 << t);
    poly df0 = f.deriv().slice((1 << t) - 1);
    df0[(1 << t) - 1] = 0;
    for (int i = 0; i < (1 << t); ++i) dg[i | (1 << t)] = reduce(dg[i] - df0[i]);
    memcpy(dg.base(), df0.base(), sizeof(int) * ((1 << t) - 1));
    tmp.resize(2 << t), fft(tmp, t + 1);
    df0.resize(2 << t), fft(df0, t + 1);
    for (int i = 0; i < (2 << t); ++i) df0[i] = (ll)df0[i] * tmp[i] % mod;
    fft(df0, t + 1, -1);
    for (int i = 0; i < (1 << t); ++i) df0[i | (1 << t)] = df0[i], df0[i] = 0;
    dg = (dg - df0).integ().slice((2 << t) - 1) - f;
    fft(dg, t + 1);
    for (int i = 0; i < (2 << t); ++i) tmp[i] = (ll)dg[i] * dftg[i] % mod;
    fft(tmp, t + 1, -1);
    g.resize(2 << t);
    for (int i = 1 << t; i < (2 << t); ++i) g[i] = neg(tmp[i]);
  }
} nit;

struct Transposition {
  vector<int> _mul(int l, vector<int> res, const poly &b) {
    vector<int> tmp(1 << l);
    memcpy(tmp.data(), b.base(), sizeof(int) * (b.deg() + 1));
    reverse(tmp.begin() + 1, tmp.end());
    fft(tmp.data(), l);
    for (int i = 0; i < (1 << l); ++i) res[i] = (ll)res[i] * tmp[i] % mod;
    fft(res.data(), l, -1);
    return res;
  }
  poly bfMul(const poly &a, const poly &b) {
    int n = a.deg(), m = b.deg();
    poly ret = zeroes(n - m);
    for (int i = 0; i <= n - m; ++i)
      for (int j = 0; j <= m; ++j) ret[i] = (ret[i] + (ll)a[i + j] * b[j]) % mod;
    return ret;
  }
  poly mul(const poly &a, const poly &b) {
    if (a.deg() < b.deg()) return 0;
    if (a.deg() <= BRUTE_N2_LIMIT) return bfMul(a, b);
    int l = 0;
    while ((1 << l) <= a.deg()) ++l;
    vector<int> res(1 << l);
    memcpy(res.data(), a.base(), sizeof(int) * (a.deg() + 1));
    fft(res.data(), l);
    res = _mul(l, res, b);
    res.resize(a.deg() - b.deg() + 1);
    return res;
  }
  pair<poly, poly> mul2(const poly &a, const poly &b1, const poly &b2) {
    if (a.deg() <= BRUTE_N2_LIMIT) return make_pair(bfMul(a, b1), bfMul(a, b2));
    int l = 0;
    while ((1 << l) <= a.deg()) ++l;
    vector<int> fa(1 << l);
    memcpy(fa.data(), a.base(), sizeof(int) * (a.deg() + 1));
    fft(fa.data(), l);
    vector<int> res1 = _mul(l, fa, b1), res2 = _mul(l, fa, b2);
    res1.resize(a.deg() - b1.deg() + 1), res2.resize(a.deg() - b2.deg() + 1);
    return {res1, res2};
  }
  vector<int> ls, rs, pos;
  vector<poly> p, q;
  void _build(int n) {
    ls.assign(n * 2 - 1, 0), rs.assign(n * 2 - 1, 0), p.assign(n * 2 - 1, 0), q.assign(n * 2 - 1, 0), pos.resize(n);
    int cnt = 0;
    function<int(int, int)> dfs = [&](int l, int r) {
      if (l == r) { pos[l] = cnt; return cnt++; }
      int ret = cnt++;
      int mid = (l + r) >> 1;
      ls[ret] = dfs(l, mid), rs[ret] = dfs(mid + 1, r);
      return ret;
    };
    dfs(0, n - 1);
  }
  vector<int> _eval(vector<int> f, const vector<int> &x) {
    int n = f.size();
    _build(n);
    for (int i = 0; i < n; ++i) q[pos[i]] = {1, neg(x[i])};
    for (int i = n * 2 - 2; i >= 0; --i)
      if (ls[i]) q[i] = q[ls[i]] * q[rs[i]];
    f.resize(n * 2);
    p[0] = mul(f, q[0].inv());
    for (int i = 0; i < n * 2 - 1; ++i)
      if (ls[i]) tie(p[ls[i]], p[rs[i]]) = mul2(p[i], q[rs[i]], q[ls[i]]);
    vector<int> ret(n);
    for (int i = 0; i < n; ++i) ret[i] = p[pos[i]][0];
    return ret;
  }
  vector<int> eval(const poly &f, const vector<int> &x) {
    int n = f.deg() + 1, m = x.size();
    vector<int> tmpf = f.a, tmpx = x;
    tmpf.resize(max(n, m)), tmpx.resize(max(n, m));
    vector<int> ret = _eval(tmpf, tmpx);
    ret.resize(m);
    return ret;
  }
  poly inter(const vector<int> &x, const vector<int> &y) {
    int n = x.size();
    _build(n);
    for (int i = 0; i < n; ++i) q[pos[i]] = {1, norm(mod - x[i])};
    for (int i = n * 2 - 2; i >= 0; --i)
      if (ls[i]) q[i] = q[ls[i]] * q[rs[i]];
    poly tmp = q[0];
    reverse(tmp.a.begin(), tmp.a.end());
    vector<int> f = tmp.deriv().a;
    f.resize(n * 2);
    p[0] = mul(f, q[0].inv());
    for (int i = 0; i < n * 2 - 1; ++i)
      if (ls[i]) tie(p[ls[i]], p[rs[i]]) = mul2(p[i], q[rs[i]], q[ls[i]]);
    for (int i = 0; i < n; ++i) p[pos[i]] = nt.inv(p[pos[i]][0]) * (ll)y[i] % mod;
    for (int i = 0; i < n * 2 - 1; ++i) reverse(q[i].a.begin(), q[i].a.end());
    for (int i = n * 2 - 2; i >= 0; --i)
      if (ls[i]) p[i] = p[ls[i]] * q[rs[i]] + p[rs[i]] * q[ls[i]];
    return p[0];
  }
} tp;

struct FactorialPolynomials {
  pair<poly, poly> mul2(const poly &a, const poly &b1, const poly &b2) {
    int n = a.deg() + max(b1.deg(), b2.deg());
    if (n <= BRUTE_N2_LIMIT) return {a * b1, a * b2};
    int l = 0;
    while ((1 << l) <= n) ++l;
    vector<int> fa(1 << l);
    memcpy(fa.data(), a.base(), sizeof(int) * (a.deg() + 1));
    fft(fa.data(), l);
    vector<int> res1(1 << l), res2(1 << l);
    memcpy(res1.data(), b1.base(), sizeof(int) * (b1.deg() + 1)), memcpy(res2.data(), b2.base(), sizeof(int) * (b2.deg() + 1));
    fft(res1.data(), l), fft(res2.data(), l);
    for (int i = 0; i < (1 << l); ++i) res1[i] = (ll)res1[i] * fa[i] % mod, res2[i] = (ll)res2[i] * fa[i] % mod;
    fft(res1.data(), l, -1), fft(res2.data(), l, -1);
    res1.resize(a.deg() + b1.deg() + 1), res2.resize(a.deg() + b2.deg() + 1);
    return {res1, res2};
  }
  vector<int> ls, rs, pos;
  vector<poly> p, q;
  void _build(int n) {
    ls.assign(n * 2 - 1, 0), rs.assign(n * 2 - 1, 0), p.assign(n * 2 - 1, 0), q.assign(n * 2 - 1, 0), pos.resize(n);
    int cnt = 0;
    function<int(int, int)> dfs = [&](int l, int r) {
      if (l == r) { pos[l] = cnt; return cnt++; }
      int ret = cnt++;
      int mid = (l + r) >> 1;
      ls[ret] = dfs(l, mid), rs[ret] = dfs(mid + 1, r);
      return ret;
    };
    dfs(0, n - 1);
  }
  vector<int> toPoly(vector<int> f) {
    int n = f.size();
    _build(n);
    for (int i = 0; i < n; ++i) p[pos[i]] = f[i], q[pos[i]] = {neg(i), 1};
    for (int i = n * 2 - 2; i >= 0; --i)
      if (ls[i]) tie(p[i], q[i]) = mul2(q[ls[i]], p[rs[i]], q[rs[i]]), p[i] += p[ls[i]];
    return p[0];
  }
  vector<int> lagrange(int x, vector<int> y) {
    int m = y.size(), n = m * 2 - 1;
    vector<int> tinv(n);
    if (x == m)
      for (int i = 0; i < n; ++i) tinv[i] = ginv[x - (m - 1 - i)];
    else {
      vector<int> tfac(n), tifac(n);
      tfac[0] = reduce(x - (m - 1));
      for (int i = 1; i < n; ++i) tfac[i] = (ll)tfac[i - 1] * (x - (m - 1 - i) + mod) % mod;
      tifac[n - 1] = nt.inv(tfac[n - 1]);
      for (int i = n - 1; i; --i) tifac[i - 1] = (ll)tifac[i] * (x - (m - 1 - i) + mod) % mod;
      tinv[0] = tifac[0];
      for (int i = 1; i < n; ++i) tinv[i] = (ll)tifac[i] * tfac[i - 1] % mod;
    }
    for (int i = 0; i < m; ++i)
      y[i] = (ll)((m - i) & 1 ? y[i] : mod - y[i]) * gifac[i] % mod * gifac[m - 1 - i] % mod;
    vector<int> ret(m);
    if (n <= BRUTE_N2_LIMIT) {
      for (int i = 0; i < m; ++i)
        for (int j = 0; j <= m - 1 + i && j < m; ++j)
          fam(ret[i], y[j], tinv[m - 1 + i - j]);
    } else {
      int l = 0;
      while ((1 << l) < n) ++l;
      auto tmp = tinv;
      y.resize(1 << l), tmp.resize(1 << l);
      fft(y.data(), l), fft(tmp.data(), l);
      for (int i = 0; i < (1 << l); ++i) tmp[i] = (ll)tmp[i] * y[i] % mod;
      fft(tmp.data(), l, -1);
      memcpy(ret.data(), tmp.data() + m - 1, sizeof(int) * m);
    }
    int fac = 1;
    for (int i = 0; i < m; ++i) fac = (ll)fac * (x - i) % mod;
    for (int i = 0; i < m; ++i)
      ret[i] = (ll)ret[i] * fac % mod,
      fac = (ll)fac * (x + i + 1) % mod * tinv[i] % mod;
    return ret;
  }
  pair<vector<int>, vector<int>> lagrange2(int x, vector<int> y1, vector<int> y2) {
    assert(y1.size() == y2.size());
    int m = y1.size(), n = m * 2 - 1;
    vector<int> tinv(n);
    if (x == m)
      for (int i = 0; i < n; ++i) tinv[i] = ginv[x - (m - 1 - i)];
    else {
      vector<int> tfac(n), tifac(n);
      tfac[0] = reduce(x - (m - 1));
      for (int i = 1; i < n; ++i) tfac[i] = (ll)tfac[i - 1] * (x - (m - 1 - i) + mod) % mod;
      tifac[n - 1] = nt.inv(tfac[n - 1]);
      for (int i = n - 1; i; --i) tifac[i - 1] = (ll)tifac[i] * (x - (m - 1 - i) + mod) % mod;
      tinv[0] = tifac[0];
      for (int i = 1; i < n; ++i) tinv[i] = (ll)tifac[i] * tfac[i - 1] % mod;
    }
    for (int i = 0; i < m; ++i)
      y1[i] = (ll)((m - i) & 1 ? y1[i] : mod - y1[i]) * gifac[i] % mod * gifac[m - 1 - i] % mod,
      y2[i] = (ll)((m - i) & 1 ? y2[i] : mod - y2[i]) * gifac[i] % mod * gifac[m - 1 - i] % mod;
    vector<int> ret1(m), ret2(m);
    if (n <= BRUTE_N2_LIMIT) {
      for (int i = 0; i < m; ++i)
        for (int j = 0; j <= m - 1 + i && j < m; ++j)
          fam(ret1[i], y1[j], tinv[m - 1 + i - j]),
          fam(ret2[i], y2[j], tinv[m - 1 + i - j]);
    } else {
      int l = 0;
      while ((1 << l) < n) ++l;
      auto tmp = tinv;
      y1.resize(1 << l), y2.resize(1 << l), tmp.resize(1 << l);
      fft(y1.data(), l), fft(y2.data(), l), fft(tmp.data(), l);
      for (int i = 0; i < (1 << l); ++i)
        y1[i] = (ll)tmp[i] * y1[i] % mod, y2[i] = (ll)tmp[i] * y2[i] % mod;
      fft(y1.data(), l, -1), fft(y2.data(), l, -1);
      memcpy(ret1.data(), y1.data() + m - 1, sizeof(int) * m),
      memcpy(ret2.data(), y2.data() + m - 1, sizeof(int) * m);
    }
    int fac = 1;
    for (int i = 0; i < m; ++i) fac = (ll)fac * (x - i) % mod;
    for (int i = 0; i < m; ++i)
      ret1[i] = (ll)ret1[i] * fac % mod, ret2[i] = (ll)ret2[i] * fac % mod,
      fac = (ll)fac * (x + i + 1) % mod * tinv[i] % mod;
    return {ret1, ret2};
  }
  vector<int> lagrangeDoubling(vector<int> f) {
    auto tmp = lagrange(f.size(), f);
    f.insert(f.end(), tmp.begin(), tmp.end());
    return f;
  }
  pair<vector<int>, vector<int>> lagrangeDoubling2(vector<int> f1, vector<int> f2) {
    vector<int> tmp1, tmp2;
    tie(tmp1, tmp2) = lagrange2(f1.size(), f1, f2);
    f1.insert(f1.end(), tmp1.begin(), tmp1.end()),
    f2.insert(f2.end(), tmp2.begin(), tmp2.end());
    return {f1, f2};
  }
  vector<int> lagrangeExtending(vector<int> f) {
    int n = f.size();
    int res = 0;
    for (int i = 0; i < n; ++i)
      res = (res + (ll)((n - i) & 1 ? f[i] : mod - f[i]) * gifac[i] % mod * gifac[n - 1 - i] % mod * ginv[n - i]) % mod;
    for (int i = 1; i <= n; ++i) res = (ll)res * i % mod;
    f.push_back(res);
    return f;
  }
  vector<int> evalFacPoly(vector<int> f) {
    int n = f.size();
    poly g = zeroes(n - 1);
    for (int i = 0; i < n; ++i) g[i] = gifac[i];
    g = (g * f).slice(n - 1);
    for (int i = 0; i < n; ++i) g[i] = (ll)g[i] * gfac[i] % mod;
    return g;
  }
  vector<int> evalPoly(vector<int> f) {
    int n = f.size();
    _build(n);
    for (int i = 0; i < n; ++i) p[pos[i]] = f[i];
    for (int i = n * 2 - 2; i >= 0; --i)
      if (ls[i]) {
        vector<int> l = p[ls[i]], r = p[rs[i]];
        if (l.size() > r.size())
          tie(l, r) = lagrangeDoubling2(l, lagrangeExtending(r)),
          l.pop_back(), r.pop_back();
        else tie(l, r) = lagrangeDoubling2(l, r);
        p[i].resize(p[ls[i]].size() + p[rs[i]].size());
        for (int j = 0; j < p[i].size(); ++j)
          p[i][j] = (l[j] + (ll)r[j] * mpow(j, p[ls[i]].size())) % mod;
      }
    return p[0];
  }
  vector<int> interFacPoly(vector<int> y) {
    int n = y.size();
    poly g = zeroes(n - 1);
    for (int i = 0; i < n; ++i)
      g[i] = i & 1 ? mod - gifac[i] : gifac[i], y[i] = (ll)y[i] * gifac[i] % mod;
    return (g * y).slice(n - 1);
  }
  vector<int> interPoly(vector<int> y) { return toPoly(interFacPoly(y)); }
  vector<int> toFacPoly(vector<int> f) { return interFacPoly(evalPoly(f)); }
  vector<int> mul(vector<int> a, vector<int> b) {
    int n = a.size() + b.size() - 1;
    a.resize(n), b.resize(n);
    a = evalFacPoly(a), b = evalFacPoly(b);
    for (int i = 0; i < n; ++i) a[i] = (ll)a[i] * b[i] % mod;
    return interFacPoly(a);
  }
} fp;

poly poly::operator*(const poly &o) const {
  int n = deg(), m = o.deg();
  if (0 && (n <= 10 || m <= 10 || n + m <= BRUTE_N2_LIMIT)) {
    poly ret = zeroes(n + m);
    for (int i = 0; i <= n; ++i)
      for (int j = 0; j <= m; ++j) fam(ret[i + j], a[i], o[j]);
    return ret;
  }
  n += m;
  int l = 0;
  while ((1 << l) <= n) ++l;
  poly ret = a, tmp = o;
  ret.resize(1 << l), tmp.resize(1 << l);
  fft(ret, l), fft(tmp, l);
  for (int i = 0; i < (1 << l); ++i) ret[i] = (ll)ret[i] * tmp[i] % mod;
  fft(ret, l, -1);
  return ret.slice(n);
}
poly poly::inv() const {
  poly g = nt.inv(a[0]);
  for (int t = 0; (1 << t) <= deg(); ++t) nit.inv(slice((2 << t) - 1), g, t);
  g.redeg(deg());
  return g;
}
poly poly::taylor(int k) const {
  int n = deg();
  poly f = zeroes(n), g = zeroes(n);
  for (int i = 0, pw = 1; i <= n; ++i)
    f[n - i] = (ll)a[i] * gfac[i] % mod, g[i] = (ll)pw * gifac[i] % mod, pw = (ll)pw * k % mod;
  f *= g;
  for (int i = 0; i <= n; ++i) g[i] = (ll)f[n - i] * gifac[i] % mod;
  return g;
}
poly poly::pow(int k) const {
  if (k == 0) return 1;
  if (k == 1) return *this;
  int n = deg() * k;
  int l = 0;
  while ((1 << l) <= n) ++l;
  poly ret = a;
  ret.resize(1 << l), fft(ret, l);
  for (int i = 0; i < (1 << l); ++i) ret[i] = mpow(ret[i], k);
  fft(ret, -1);
  return ret.slice(n);
}
poly poly::deriv() const {
  if (deg() == 0) return 0;
  vector<int> ret(deg());
  for (int i = 0; i < deg(); ++i) ret[i] = (ll)a[i + 1] * (i + 1) % mod;
  return ret;
}
poly poly::integ() const {
  vector<int> ret(size() + 1);
  for (int i = 0; i <= deg(); ++i) ret[i + 1] = (ll)a[i] * ginv[i + 1] % mod;
  return ret;
}
poly poly::quo(const poly &o) const {
  if (o.deg() == 0) return (ll)a[0] * nt.inv(o[0]) % mod;
  poly g = nt.inv(o[0]);
  int t = 0, n;
  for (n = 1; (n << 1) <= o.deg(); ++t, n <<= 1) nit.inv(o.slice((n << 1) - 1), g, t);
  poly dftg = g;
  dftg.resize(n << 1), fft(dftg, t + 1);
  poly eps1 = o;
  eps1.resize(n << 1), fft(eps1, t + 1);
  for (int i = 0; i < (n << 1); ++i) eps1[i] = (ll)eps1[i] * dftg[i] % mod;
  fft(eps1, t + 1, -1);
  for (int i = 0; i < n; ++i) eps1[i] = eps1[i + n], eps1[i + n] = 0;
  fft(eps1, t + 1);
  poly h0 = slice(n - 1);
  h0.resize(n << 1), fft(h0, t + 1);
  poly h0g0 = zeroes((n << 1) - 1);
  for (int i = 0; i < (n << 1); ++i) h0g0[i] = (ll)h0[i] * dftg[i] % mod;
  fft(h0g0, t + 1, -1);
  poly h0eps1 = zeroes((n << 1) - 1);
  for (int i = 0; i < (n << 1); ++i) h0eps1[i] = (ll)h0[i] * eps1[i] % mod;
  fft(h0eps1, t + 1, -1);
  for (int i = 0; i < n; ++i) h0eps1[i] = reduce(operator[](i + n) - h0eps1[i]);
  memset(h0eps1.base() + n, 0, sizeof(int) << t);
  fft(h0eps1, t + 1);
  for (int i = 0; i < (n << 1); ++i) h0eps1[i] = (ll)h0eps1[i] * dftg[i] % mod;
  fft(h0eps1, t + 1, -1);
  for (int i = 0; i < n; ++i) h0eps1[i + n] = h0eps1[i], h0eps1[i] = 0;
  return (h0g0 + h0eps1).slice(o.deg());
}
poly poly::ln() const {
  if (deg() == 0) return 0;
  return deriv().quo(slice(deg() - 1)).integ();
}
pair<poly, poly> poly::sqrti() const {
  poly g = nt.sqrt(a[0]), h = nt.inv(a[0]), dftg = g;
  for (int t = 0; (1 << t) <= deg(); ++t) {
    nit.sqrt(slice((2 << t) - 1), g, dftg, h, t);
    dftg = g, fft(dftg, t + 1);
    nit.inv(g, dftg, h, t);
  }
  return make_pair(g.slice(deg()), h.slice(deg()));
}
poly poly::sqrt() const {
  poly g = nt.sqrt(a[0]), h = nt.inv(a[0]), dftg = g;
  for (int t = 0; (1 << t) <= deg(); ++t) {
    nit.sqrt(slice((2 << t) - 1), g, dftg, h, t);
    if ((2 << t) <= deg()) {
      dftg = g, fft(dftg, t + 1);
      nit.inv(g, dftg, h, t);
    }
  }
  return g.slice(deg());
}
pair<poly, poly> poly::expi() const {
  poly g = 1, h = 1, dftg = {1, 1};
  for (int t = 0; (1 << t) <= deg(); ++t) {
    nit.exp(slice((2 << t) - 1), g, dftg, h, t);
    dftg = g, dftg.resize(4 << t);
    fft(dftg, t + 2);
    poly f2n = dftg.slice((2 << t) - 1);
    nit.inv(g, f2n, h, t);
  }
  return make_pair(g.slice(deg()), h.slice(deg()));
}
poly poly::exp() const {
  poly g = 1, h = 1, dftg = {1, 1};
  for (int t = 0; (1 << t) <= deg(); ++t) {
    nit.exp(slice((2 << t) - 1), g, dftg, h, t);
    if ((2 << t) <= deg()) {
      dftg = g, dftg.resize(4 << t);
      fft(dftg, t + 2);
      poly f2n = dftg.slice((2 << t) - 1);
      nit.inv(g, f2n, h, t);
    }
  }
  return g.slice(deg());
}
poly poly::exp(int k) const {
  int lead, lz = 0;
  while (lz < deg() && !a[lz]) ++lz;
  if (lz == deg() && !a[lz]) return *this;
  lead = a[lz];
  if ((ll)lz * k > deg()) return zeroes(deg());
  poly part = poly(vector<int>(a.begin() + lz, a.begin() + deg() - lz * (k - 1) + 1)) * nt.inv(lead);
  part = (part.ln() * k).exp() * mpow(lead, k);
  vector<int> ret(deg() + 1);
  memcpy(ret.data() + lz * k, part.base(), sizeof(int) * (deg() - lz * k + 1));
  return ret;
}
poly poly::operator/(const poly &o) const {
  int n = deg(), m = o.deg();
  if (n < m) return 0;
  poly ta(vector<int>(a.rbegin(), a.rend())), tb(vector<int>(o.a.rbegin(), o.a.rend()));
  ta.redeg(n - m), tb.redeg(n - m);
  poly q = ta.quo(tb);
  return vector<int>(q.a.rbegin(), q.a.rend());
}
pair<poly, poly> poly::div(const poly &o) const {
  if (deg() < o.deg()) return make_pair(0, *this);
  int n = deg(), m = o.deg();
  poly q = operator/(o), r;
  int l = 0;
  while ((1 << l) < o.deg()) ++l;
  int t = (1 << l) - 1;
  poly tmp = zeroes(t);
  r = zeroes(t);
  for (int i = 0; i <= m; ++i) add(r[i & t], o[i]);
  for (int i = 0; i <= n - m; ++i) add(tmp[i & t], q[i]);
  fft(r, l), fft(tmp, l);
  for (int i = 0; i <= t; ++i) tmp[i] = (ll)tmp[i] * r[i] % mod;
  fft(tmp, l, -1);
  memset(r.base(), 0, sizeof(int) << l);
  for (int i = 0; i <= n; ++i) add(r[i & t], a[i]);
  for (int i = 0; i < m; ++i) sub(r[i], tmp[i]);
  return make_pair(q, r.slice(m - 1));
}
poly poly::operator%(const poly &o) const { return div(o).second; }

int main() {
  int n; scanf("%d", &n);
  poly f = zeroes(n - 1);
  for (int i = 0; i < n; ++i) scanf("%d", &f[i]);
  f = f.srcExp();
  for (int i = 0; i < n; ++i) printf("%d%c", f[i], " \n"[i + 1 == n]);
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 20
Accepted
time: 1ms
memory: 3832kb

input:

100
0 158447743 737554986 671332600 489297184 754299210 115728600 816221630 819073359 691660913 910093246 562505672 355119917 385019894 611338034 123976316 122342952 82142434 796101450 994778874 575255638 493217967 652609142 662045597 783871340 470398790 241710709 754059035 534582325 836438174 95789...

output:

1 158447743 989903074 918187254 200068193 455062373 11196740 759336019 312075964 992242039 123230223 144998958 189062409 420150911 170942299 432890803 760087114 639614944 787205333 63667632 243571846 141993017 450288335 173318832 743144111 879389773 95666186 453410000 569486107 512729334 226210545 5...

result:

ok 100 numbers

Test #2:

score: 20
Accepted
time: 5ms
memory: 3996kb

input:

5000
0 354399910 26360255 630255958 717224815 366941345 333979504 905420494 38176634 475666562 611197455 433060682 509600868 845217181 520468365 529689763 431747498 192834976 685184103 287994809 273221518 522219732 427553800 10872482 525061651 448069946 183539744 610476003 840167561 241104955 404100...

output:

1 354399910 51676417 184411965 928033808 589971658 936383703 745898312 943454394 65252947 270867254 772620225 995104944 58521883 96491645 326592384 283913887 140742590 960115688 684602174 623426872 184484323 952879775 315489867 167038509 580362327 164714100 833258994 345402076 261957154 469710461 98...

result:

ok 5000 numbers

Test #3:

score: 20
Accepted
time: 13ms
memory: 5000kb

input:

30000
0 147199510 293972908 780683378 633744119 800282266 162025013 919460711 939176222 298044997 277962122 729446209 455723129 756791462 84697115 579989768 945113433 549318980 229266945 869577376 103161009 960973464 440149102 836285074 687333626 638404974 184096947 370164754 454531549 142629528 150...

output:

1 147199510 30930552 734023222 564008583 299902819 450980389 806779390 654937901 981162061 206882721 35851319 707998765 357594654 305814262 734562024 591099032 543969413 539432668 154163976 451201740 856569012 898961429 732819402 243444529 673245321 601964526 206333661 876679409 438174247 903706710 ...

result:

ok 30000 numbers

Test #4:

score: 20
Accepted
time: 48ms
memory: 8612kb

input:

100000
0 279349013 196667718 617497154 78288698 996674429 180463729 304956112 173800460 352061138 224505321 119706982 726737325 564797383 757014824 888433954 747100108 723246918 645172013 184990722 321964667 456686646 138153830 701558524 317746193 650472945 49496183 864461799 982372868 582778782 242...

output:

1 279349013 426120005 205100346 421201310 474118168 879116053 749708347 23319122 872190753 903275287 797670709 327019687 707029564 46014243 838268797 28223150 48499086 927009654 52188573 200586020 4624185 827007182 201682326 552029133 820855946 97607062 601649418 37529652 24405665 116064030 62051631...

result:

ok 100000 numbers

Test #5:

score: 20
Accepted
time: 615ms
memory: 51176kb

input:

1000000
0 204517192 162156394 729093416 352181074 335898409 357987855 386581690 26622360 437289663 34104646 938411413 659876244 293619518 291093969 909364118 179765868 89417259 632261731 375051702 493701794 771716785 682264158 329653513 86558030 9195128 957504298 22555222 384175297 128022431 5957444...

output:

1 204517192 619471860 517479130 453571099 756084155 250936574 733632267 123356262 736823877 36879005 134860159 91607107 898896915 410588432 269428255 936285724 807500080 148699607 694600424 104902381 245153045 814276600 610840817 459421157 797608659 275590448 967892574 251820609 688675003 675994534 ...

result:

ok 1000000 numbers