QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#679127 | #9526. Subsequence Counting | ucup-team159# | WA | 1ms | 3608kb | C++23 | 9.9kb | 2024-10-26 16:56:37 | 2024-10-26 16:56:39 |
Judging History
answer
#line 1 "H.cpp"
// #pragma GCC target("avx2,avx512f,avx512vl,avx512bw,avx512dq,avx512cd,avx512vbmi,avx512vbmi2,avx512vpopcntdq,avx512bitalg,bmi,bmi2,lzcnt,popcnt")
// #pragma GCC optimize("Ofast")
#line 2 "/home/sigma/comp/library/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
#define rep(i,n) for(int i=0;i<int(n);i++)
#define rep1(i,n) for(int i=1;i<=int(n);i++)
#define per(i,n) for(int i=int(n)-1;i>=0;i--)
#define per1(i,n) for(int i=int(n);i>0;i--)
#define all(c) c.begin(),c.end()
#define si(x) int(x.size())
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
template<class T> using V = vector<T>;
template<class T> using VV = vector<vector<T>>;
template<class T,class U> bool chmax(T& x, U y){
if(x<y){ x=y; return true; }
return false;
}
template<class T,class U> bool chmin(T& x, U y){
if(y<x){ x=y; return true; }
return false;
}
template<class T> void mkuni(V<T>& v){sort(all(v));v.erase(unique(all(v)),v.end());}
template<class T> int lwb(const V<T>& v, const T& a){return lower_bound(all(v),a) - v.begin();}
template<class T>
V<T> Vec(size_t a) {
return V<T>(a);
}
template<class T, class... Ts>
auto Vec(size_t a, Ts... ts) {
return V<decltype(Vec<T>(ts...))>(a, Vec<T>(ts...));
}
template<class S,class T> ostream& operator<<(ostream& o,const pair<S,T> &p){
return o<<"("<<p.fs<<","<<p.sc<<")";
}
template<class T> ostream& operator<<(ostream& o,const vector<T> &vc){
o<<"{";
for(const T& v:vc) o<<v<<",";
o<<"}";
return o;
}
constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n-1); }
#ifdef LOCAL
#define show(x) cerr << "LINE" << __LINE__ << " : " << #x << " = " << (x) << endl
void dmpr(ostream& os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
os<<t<<" ~ ";
dmpr(os,args...);
}
#define shows(...) cerr << "LINE" << __LINE__ << " : ";dmpr(cerr,##__VA_ARGS__)
#define dump(x) cerr << "LINE" << __LINE__ << " : " << #x << " = {"; \
for(auto v: x) cerr << v << ","; cerr << "}" << endl;
#else
#define show(x) void(0)
#define dump(x) void(0)
#define shows(...) void(0)
#endif
template<class D> D divFloor(D a, D b){
return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
template<class D> D divCeil(D a, D b) {
return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}
#line 1 "/home/sigma/comp/library/math/mint.cpp"
/*
任意mod なら
template なくして costexpr の行消して global に unsigned int mod = 1;
で cin>>mod してから使う
任意 mod はかなり遅いので、できれば "atcoder/modint" を使う
*/
template<unsigned int mod_>
struct ModInt{
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
constexpr static uint mod = mod_;
uint v;
ModInt():v(0){}
ModInt(ll _v):v(normS(_v%mod+mod)){}
explicit operator bool() const {return v!=0;}
static uint normS(const uint &x){return (x<mod)?x:x-mod;} // [0 , 2*mod-1] -> [0 , mod-1]
static ModInt make(const uint &x){ModInt m; m.v=x; return m;}
ModInt operator+(const ModInt& b) const { return make(normS(v+b.v));}
ModInt operator-(const ModInt& b) const { return make(normS(v+mod-b.v));}
ModInt operator-() const { return make(normS(mod-v)); }
ModInt operator*(const ModInt& b) const { return make((ull)v*b.v%mod);}
ModInt operator/(const ModInt& b) const { return *this*b.inv();}
ModInt& operator+=(const ModInt& b){ return *this=*this+b;}
ModInt& operator-=(const ModInt& b){ return *this=*this-b;}
ModInt& operator*=(const ModInt& b){ return *this=*this*b;}
ModInt& operator/=(const ModInt& b){ return *this=*this/b;}
ModInt& operator++(int){ return *this=*this+1;}
ModInt& operator--(int){ return *this=*this-1;}
template<class T> friend ModInt operator+(T a, const ModInt& b){ return (ModInt(a) += b);}
template<class T> friend ModInt operator-(T a, const ModInt& b){ return (ModInt(a) -= b);}
template<class T> friend ModInt operator*(T a, const ModInt& b){ return (ModInt(a) *= b);}
template<class T> friend ModInt operator/(T a, const ModInt& b){ return (ModInt(a) /= b);}
ModInt pow(ll p) const {
if(p<0) return inv().pow(-p);
ModInt a = 1;
ModInt x = *this;
while(p){
if(p&1) a *= x;
x *= x;
p >>= 1;
}
return a;
}
ModInt inv() const { // should be prime
return pow(mod-2);
}
// ll extgcd(ll a,ll b,ll &x,ll &y) const{
// ll p[]={a,1,0},q[]={b,0,1};
// while(*q){
// ll t=*p/ *q;
// rep(i,3) swap(p[i]-=t*q[i],q[i]);
// }
// if(p[0]<0) rep(i,3) p[i]=-p[i];
// x=p[1],y=p[2];
// return p[0];
// }
// ModInt inv() const {
// ll x,y;
// extgcd(v,mod,x,y);
// return make(normS(x+mod));
// }
bool operator==(const ModInt& b) const { return v==b.v;}
bool operator!=(const ModInt& b) const { return v!=b.v;}
bool operator<(const ModInt& b) const { return v<b.v;}
friend istream& operator>>(istream &o,ModInt& x){
ll tmp;
o>>tmp;
x=ModInt(tmp);
return o;
}
friend ostream& operator<<(ostream &o,const ModInt& x){ return o<<x.v;}
// friend ostream& operator<<(ostream &o,const ModInt& x){
// for(int b=1;b<=1000;b++){
// ModInt ib = ModInt(b).inv();
// for(int a=-1000;a<=1000;a++){
// if(ModInt(a) * ib == x){
// return o << a << "/" << b;
// }
// }
// }
// return o<<x.v;
// }
};
using mint = ModInt<998244353>;
//using mint = ModInt<1000000007>;
V<mint> fact,ifact,invs;
// a,b >= 0 のみ
mint Choose(int a,int b){
if(b<0 || a<b) return 0;
return fact[a] * ifact[b] * ifact[a-b];
}
/*
// b >= 0 の範囲で、 Choose(a,b) = a(a-1)..(a-b+1) / b!
mint Choose(int a,int b){
if(b<0 || a<b) return 0;
return fact[a] * ifact[b] * ifact[a-b];
}
*/
void InitFact(int N){ //[0,N]
N++;
fact.resize(N);
ifact.resize(N);
invs.resize(N);
fact[0] = 1;
rep1(i,N-1) fact[i] = fact[i-1] * i;
ifact[N-1] = fact[N-1].inv();
for(int i=N-2;i>=0;i--) ifact[i] = ifact[i+1] * (i+1);
rep1(i,N-1) invs[i] = fact[i-1] * ifact[i];
}
#line 6 "H.cpp"
struct EG { ll g, x, y; };
EG extGcdSub(ll a, ll b) {
if(b == 0){
if (a >= 0) return EG{a, 1, 0};
else return EG{-a, -1, 0};
}else{
auto e = extGcdSub(b, a % b);
return EG{e.g, e.y, e.x - a / b * e.y};
}
}
EG extGcd(ll a,ll b){
auto e = extGcdSub(a,b);
if(e.x < 0){
if(b > 0){
e.x += b/e.g;
e.y -= a/e.g;
}else{
e.x -= b/e.g;
e.y += a/e.g;
}
}
return e;
}
/*
xz + md? = g
*/
ll inv_mod(ll x, ll md) {
auto z = extGcd(x, md).x;
return (z % md + md) % md;
}
// struct Monoid{
// string s;
// Monoid():s(""){}
// Monoid(string s_):s(s_){}
// static Monoid op(const Monoid &a, const Monoid &b){
// return Monoid{a.s+b.s};
// }
// Monoid pow(ll p) const {
// Monoid a = Monoid();
// Monoid x = *this;
// while(p){
// if(p&1) a = op(a, x);
// x = op(x, x);
// p >>= 1;
// }
// return a;
// }
// friend ostream& operator<<(ostream &o,const Monoid& x){ return o<<x.s;}
// };
template<class T>
struct Matrix: public vector<vector<T>>{
Matrix(int n) : vector<vector<T>>(n,vector<T>(n)){}
Matrix(int h,int w) : vector<vector<T>>(h,vector<T>(w)){}
Matrix(const vector<vector<T>>& m){(*this) = m;}
static Matrix E(int n){
Matrix a(n,n);
rep(i,n) a[i][i] = 1;
return a;
}
int h() const { return (*this).size(); }
int w() const { return (*this)[0].size(); }
Matrix operator*(const Matrix& r) const {
assert(w() == r.h());
int A = h(), B = w(), C = r.w();
Matrix z(A,C);
rep(i,A) rep(k,B) rep(j,C) z[i][j] += (*this)[i][k] * r[k][j];
return z;
}
Matrix& operator+=(const Matrix& r){return (*this)=(*this)+r;}
Matrix& operator-=(const Matrix& r){return (*this)=(*this)-r;}
Matrix& operator*=(const Matrix& r){return (*this)=(*this)*r;}
Matrix pow(ll p) const {
assert(h() == w());
Matrix res = E(h());
Matrix x = *this;
while(p){
if(p&1) res *= x;
x *= x;
p >>= 1;
}
return res;
}
friend ostream& operator<<(ostream &o,const Matrix& A){
rep(i,A.h()){
rep(j,A.w()) o << A[i][j]<<" ";
o << endl;
}
return o;
}
};
using Mat = Matrix<mint>;
int M;
struct Monoid{
Mat m;
Monoid():m(Mat::E(M+1)){}
Monoid(Mat m_):m(m_){}
static Monoid op(const Monoid &a, const Monoid &b){
return Monoid{a.m*b.m};
}
Monoid pow(ll p) const {
return Monoid{m.pow(p)};
}
friend ostream& operator<<(ostream &o,const Monoid& x){ return o<<x.m;}
};
template<class T>
T f(V<ll> xs, V<T> vs, ll K){
show("-------------");
show(xs); show(vs);show(K);
int N = si(vs);
assert(si(xs) == N + 1);
assert(xs[0] == 0);
if(N == 1) return vs[0];
ll L = xs[N];
V<ll> cands;
for(ll x: xs) cands.pb(x%K);
mkuni(cands);
V<ll> nxs;
V<T> nvs;
for(ll r: cands){
nxs.pb(r);
T nv;
rep(i,N){
// [xs[i], xs[i+1]) にある qK + r の個数
ll num = divFloor(xs[i+1]-r-1, K) - divFloor(xs[i]-r-1, K);
nv = T::op(nv, vs[i].pow(num));
}
nvs.pb(nv);
}
nxs.pb(K);
ll nK = L/K*K+K - L;
return f(nxs, nvs, nK);
}
int main(){
cin.tie(0);
ios::sync_with_stdio(false); //DON'T USE scanf/printf/puts !!
cout << fixed << setprecision(20);
// {
// string s = string(10,'a') + string(6,'b') + string(10,'a') + string(1,'b');
// string t;
// rep(i,27) t += s[i*17%27];
// int res = 0;
// rep(i,27) for(int j = i+1;j<27;j++) if(t[i] == 'a' && t[j] == 'b') res++;
// cout << res << endl;
// return 0;
// }
int N; ll K,L; cin >> N >> M >> K >> L;
K = inv_mod(K, L);
V<int> t(M); rep(i,M) cin >> t[i];
V<ll> xs;
V<Monoid> vs;
int sm = 0;
xs.pb(sm);
rep(i,N){
int len, val; cin >> len >> val;
sm += len;
xs.pb(sm);
Mat m(M+1,M+1); rep(j,M+1) m[j][j] = 1;
rep(j,M) if(t[j] == val) m[j][j+1] = 1;
vs.pb(Monoid(m));
}
Monoid res = f(xs, vs, K);
cout << res.m[0][M] << endl;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3596kb
input:
4 2 17 27 3 1 10 3 6 1 10 3 1 1
output:
76
result:
ok single line: '76'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3608kb
input:
5 3 1789 15150 555 718 726 72 555 1029 718 5807 726 1002 718 7240 555
output:
390415327
result:
ok single line: '390415327'
Test #3:
score: -100
Wrong Answer
time: 0ms
memory: 3600kb
input:
1 1 1 1000000000 1000 1000000000 1000
output:
1
result:
wrong answer 1st lines differ - expected: '1755647', found: '1'