QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#678719 | #9526. Subsequence Counting | ucup-team087# | TL | 0ms | 4108kb | C++14 | 11.2kb | 2024-10-26 15:52:35 | 2024-10-26 15:52:36 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
// T: monoid representing information of an interval.
// T() should return the identity.
// T(S s) should represent a single element of the array.
// T::pull(const T &l, const T &r) should pull two intervals.
template <class T> struct SegmentTreePoint {
int logN, n;
vector<T> ts;
SegmentTreePoint() : logN(0), n(0) {}
explicit SegmentTreePoint(int n_) {
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
}
template <class S> explicit SegmentTreePoint(const vector<S> &ss) {
const int n_ = ss.size();
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
build();
}
T &at(int i) {
return ts[n + i];
}
void build() {
for (int u = n; --u; ) pull(u);
}
inline void pull(int u) {
ts[u].pull(ts[u << 1], ts[u << 1 | 1]);
}
// Changes the value of point a to s.
template <class S> void change(int a, const S &s) {
assert(0 <= a); assert(a < n);
ts[a += n] = T(s);
for (; a >>= 1; ) pull(a);
}
// Applies T::f(args...) to point a.
template <class F, class... Args>
void ch(int a, F f, Args &&... args) {
assert(0 <= a); assert(a < n);
(ts[a += n].*f)(args...);
for (; a >>= 1; ) pull(a);
}
// Calculates the product for [a, b).
T get(int a, int b) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return T();
T prodL, prodR, t;
for (a += n, b += n; a < b; a >>= 1, b >>= 1) {
if (a & 1) { t.pull(prodL, ts[a++]); prodL = t; }
if (b & 1) { t.pull(ts[--b], prodR); prodR = t; }
}
t.pull(prodL, prodR);
return t;
}
// Calculates T::f(args...) of a monoid type for [a, b).
// op(-, -) should calculate the product.
// e() should return the identity.
template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
auto
#else
decltype((std::declval<T>().*F())())
#endif
get(int a, int b, Op op, E e, F f, Args &&... args) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return e();
auto prodL = e(), prodR = e();
for (a += n, b += n; a < b; a >>= 1, b >>= 1) {
if (a & 1) prodL = op(prodL, (ts[a++].*f)(args...));
if (b & 1) prodR = op((ts[--b].*f)(args...), prodR);
}
return op(prodL, prodR);
}
// Find min b s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from left to right.
// Returns n + 1 if there is no such b.
template <class F, class... Args>
int findRight(int a, F f, Args &&... args) {
assert(0 <= a); assert(a <= n);
if ((T().*f)(args...)) return a;
if (a == n) return n + 1;
a += n;
for (; ; a >>= 1) if (a & 1) {
if ((ts[a].*f)(args...)) {
for (; a < n; ) {
if (!(ts[a <<= 1].*f)(args...)) ++a;
}
return a - n + 1;
}
++a;
if (!(a & (a - 1))) return n + 1;
}
}
// Find max a s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from right to left.
// Returns -1 if there is no such a.
template <class F, class... Args>
int findLeft(int b, F f, Args &&... args) {
assert(0 <= b); assert(b <= n);
if ((T().*f)(args...)) return b;
if (b == 0) return -1;
b += n;
for (; ; b >>= 1) if ((b & 1) || b == 2) {
if ((ts[b - 1].*f)(args...)) {
for (; b <= n; ) {
if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
}
return b - n - 1;
}
--b;
if (!(b & (b - 1))) return -1;
}
}
}; // SegmentTreePoint<T>
////////////////////////////////////////////////////////////////////////////////
// a x + b y = (+/-) gcd(a, b)
// (a, 0): g = a, x = 1, y = 0
// (0, b), (b, b), (-b, b) (b != 0): g = b, x = 0, y = 1
// otherwise: 2 |x| <= |b|, 2 |y| <= |a|
// S: signed integer
template <class S> S gojo(S a, S b, S &x, S &y) {
if (b != 0) {
const S g = gojo(b, a % b, y, x);
y -= (a / b) * x;
return g;
} else {
x = 1;
y = 0;
return a;
}
}
// floor(a / b)
Int divFloor(Int a, Int b) {
return a / b - (((a ^ b) < 0 && a % b != 0) ? 1 : 0);
}
// ceil(a / b)
Int divCeil(Int a, Int b) {
return a / b + (((a ^ b) > 0 && a % b != 0) ? 1 : 0);
}
int TLen;
vector<int> T;
struct Node {
string str;
Mint a[11][11];
Node() : a{} {
// str="";
for (int u = 0; u <= TLen; ++u) a[u][u] = 1;
}
Node(int t) : a{} {
// str=".";for(int u=0;u<TLen;++u)if(T[u]==t){str=(char)('0'+u);break;}
for (int u = 0; u <= TLen; ++u) a[u][u] = 1;
for (int u = 0; u < TLen; ++u) if (T[u] == t) a[u][u + 1] = 1;
}
void pull(const Node &l, const Node &r) {
// str=l.str+r.str;
for (int u = 0; u <= TLen; ++u) for (int v = 0; v <= TLen; ++v) a[u][v] = 0;
for (int u = 0; u <= TLen; ++u) for (int w = u; w <= TLen; ++w) for (int v = w; v <= TLen; ++v) a[u][v] += l.a[u][w] * r.a[w][v];
}
};
Node operator*(const Node &a, const Node &b) {
Node c;
c.pull(a, b);
return c;
}
Node power(Node a, int e) {
Node b;
for (; ; a = a * a) {
if (e & 1) b = b * a;
if (!(e >>= 1)) return b;
}
}
Node solve(int step, const vector<int> &xs, const vector<Node> &fs) {
const int len = fs.size();
// cerr<<"[solve] step = "<<step<<", xs = "<<xs<<", fs = ";for(int i=0;i<len;++i)cerr<<fs[i].str<<" ";cerr<<endl;
assert((int)xs.size() == len + 1);
if (step <= 1) {
Node ret;
for (int i = 0; i < len; ++i) {
ret = ret * power(fs[i], xs[i + 1] - xs[i]);
}
return ret;
}
SegmentTreePoint<Node> seg(len);
// (x, (pos, val))
vector<pair<int, pair<int, int>>> events;
for (int i = 0; i < len; ++i) {
const int l = xs[i], r = xs[i + 1];
// l <= x + step y < r
vector<int> ys{0, step, l % step, r % step};
sort(ys.begin(), ys.end());
for (int j = 0; j < (int)ys.size() - 1; ++j) {
const int y = ys[j];
const int e = divCeil(r - y, step) - divCeil(l - y, step);
// cerr<<l<<" "<<r<<"; "<<ys[j]<<" "<<ys[j+1]<<": "<<e<<endl;
if (j == 0) {
seg.at(i) = power(fs[i], e);
} else {
events.emplace_back(ys[j], make_pair(i, e));
}
}
}
seg.build();
sort(events.begin(), events.end());
events.emplace_back(step, make_pair(-1, 0));
vector<int> xxs;
vector<Node> ffs;
int x = 0;
for (const auto &ev : events) {
if (x < ev.first) {
// cerr<<x<<" "<<seg.ts[1].str<<endl;
xxs.push_back(x);
ffs.push_back(seg.ts[1]);
x = ev.first;
}
const int i = ev.second.first;
const int e = ev.second.second;
if (~i) {
seg.change(i, power(fs[i], e));
}
}
xxs.push_back(step);
return solve(divCeil(xs.back(), step) * step - xs.back(), xxs, ffs);
}
int N, K, L;
vector<int> F, V;
int main() {
for (; ~scanf("%d%d%d%d", &N, &TLen, &K, &L); ) {
T.resize(TLen);
for (int u = 0; u < TLen; ++u) {
scanf("%d", &T[u]);
}
F.resize(N);
V.resize(N);
for (int i = 0; i < N; ++i) {
scanf("%d%d", &F[i], &V[i]);
}
int D;
{
int x, y;
gojo(K, L, x, y);
D = (x % L + L) % L;
}
cerr<<"D = "<<D<<endl;
vector<int> xs(N + 1, 0);
vector<Node> fs(N);
for (int i = 0; i < N; ++i) {
xs[i + 1] = xs[i] + F[i];
fs[i] = Node(V[i]);
}
const Node ans = solve(D, xs, fs);
// cerr<<ans.str<<endl;
printf("%u\n", ans.a[0][TLen].x);
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 4108kb
input:
4 2 17 27 3 1 10 3 6 1 10 3 1 1
output:
76
result:
ok single line: '76'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3940kb
input:
5 3 1789 15150 555 718 726 72 555 1029 718 5807 726 1002 718 7240 555
output:
390415327
result:
ok single line: '390415327'
Test #3:
score: 0
Accepted
time: 0ms
memory: 3796kb
input:
1 1 1 1000000000 1000 1000000000 1000
output:
1755647
result:
ok single line: '1755647'
Test #4:
score: -100
Time Limit Exceeded
input:
1999 10 999999999 1000000000 944 901 986 915 979 988 947 999 969 946 198832 985 235662 982 367137 938 219700 949 166086 906 488084 905 891250 984 243743 971 253382 987 181971 935 2382 948 462701 981 4681 925 113363 916 119397 921 337742 982 427128 921 285959 986 197975 978 140753 907 167150 974 4576...