QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#678288#9530. A Game On Treeucup-team987#AC ✓361ms38648kbC++2320.9kb2024-10-26 14:34:082024-10-26 14:34:09

Judging History

This is the latest submission verdict.

  • [2024-10-26 14:34:09]
  • Judged
  • Verdict: AC
  • Time: 361ms
  • Memory: 38648kb
  • [2024-10-26 14:34:08]
  • Submitted

answer

/**
 * date   : 2024-10-26 15:33:58
 * author : Nyaan
 */

#define NDEBUG

using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tr2/dynamic_bitset>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility

namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  constexpr P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(T &v) {
  return next_permutation(begin(v), end(v));
}

// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
  vector<vector<T>> ret;
  vector<T> v;
  auto dfs = [&](auto rc, int i) -> void {
    if (i == (int)a.size()) {
      ret.push_back(v);
      return;
    }
    for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
  };
  dfs(dfs, 0);
  return ret;
}

// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
  T res = I;
  for (; n; f(a = a * a), n >>= 1) {
    if (n & 1) f(res = res * a);
  }
  return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
  return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}

template <typename T>
T Rev(const T &v) {
  T res = v;
  reverse(begin(res), end(res));
  return res;
}

template <typename T>
vector<T> Transpose(const vector<T> &v) {
  using U = typename T::value_type;
  if(v.empty()) return {};
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      res[j][i] = v[i][j];
    }
  }
  return res;
}

template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
  using U = typename T::value_type;
  int H = v.size(), W = v[0].size();
  vector res(W, T(H, U{}));
  for (int i = 0; i < H; i++) {
    for (int j = 0; j < W; j++) {
      if (clockwise) {
        res[W - 1 - j][i] = v[i][j];
      } else {
        res[j][H - 1 - i] = v[i][j];
      }
    }
  }
  return res;
}

}  // namespace Nyaan


// bit operation

namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return __builtin_popcountll(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan


// inout

namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan


// debug


#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif


// macro

#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)


namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }


//


template <typename T>
struct edge {
  int src, to;
  T cost;

  edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
  edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;

// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
                      bool is_1origin = true) {
  UnweightedGraph g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    if (is_1origin) x--, y--;
    g[x].push_back(y);
    if (!is_directed) g[y].push_back(x);
  }
  return g;
}

// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
                        bool is_1origin = true) {
  WeightedGraph<T> g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    cin >> c;
    if (is_1origin) x--, y--;
    g[x].emplace_back(x, y, c);
    if (!is_directed) g[y].emplace_back(y, x, c);
  }
  return g;
}

// Input of Edges
template <typename T>
Edges<T> esgraph([[maybe_unused]] int N, int M, int is_weighted = true,
                 bool is_1origin = true) {
  Edges<T> es;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    es.emplace_back(x, y, c);
  }
  return es;
}

// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
                           bool is_directed = false, bool is_1origin = true) {
  vector<vector<T>> d(N, vector<T>(N, INF));
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    d[x][y] = c;
    if (!is_directed) d[y][x] = c;
  }
  return d;
}

/**
 * @brief グラフテンプレート
 * @docs docs/graph/graph-template.md
 */






// Rerooting
// f1(c1, c2) ... merge value of child node
// f2(memo[i], chd, par) ... return value from child node to parent node
// memo[i] ... result of subtree rooted i
// dp[i] ... result of tree rooted i
template <typename T, typename G, typename F1, typename F2>
struct Rerooting {
  const G &g;
  const F1 f1;
  const F2 f2;
  vector<T> memo, dp;
  T leaf;

  Rerooting(const G &_g, const F1 _f1, const F2 _f2, const T &_leaf)
      : g(_g), f1(_f1), f2(_f2), memo(g.size()), dp(g.size()), leaf(_leaf) {
    dfs(0, -1);
    dfs2(0, -1, T{});
  }

  const T &operator[](int i) const { return dp[i]; }

  void dfs(int cur, int par) {
    vector<T> chds;
    for (auto &dst : g[cur]) {
      if (dst == par) continue;
      dfs(dst, cur);
      chds.push_back(f2(memo[dst], dst, cur));
    }
    if (chds.empty()) {
      memo[cur] = leaf;
    } else {
      memo[cur] = chds[0];
      for (int i = 1; i < (int)chds.size(); i++) {
        memo[cur] = f1(memo[cur], chds[i]);
      }
    }
  }

  void dfs2(int cur, int par, const T &pval) {
    // get cumulative sum
    vector<T> buf;
    if (cur != 0) buf.push_back(pval);
    for (auto dst : g[cur]) {
      if (dst == par) continue;
      buf.push_back(f2(memo[dst], dst, cur));
    }
    vector<T> head(buf.size()), tail(buf.size());
    if (!buf.empty()) {
      head[0] = buf[0];
      for (int i = 1; i < (int)buf.size(); i++) {
        head[i] = f1(head[i - 1], buf[i]);
      }
      tail.back() = buf.back();
      for (int i = (int)buf.size() - 2; i >= 0; i--) {
        tail[i] = f1(tail[i + 1], buf[i]);
      }
    }
    dp[cur] = head.empty() ? leaf : head.back();
    int idx = cur == 0 ? 0 : 1;
    for (auto &dst : g[cur]) {
      if (dst == par) continue;
      T val;
      bool first = idx == 0;
      bool last = idx + 1 == (int)head.size();
      if (first and last) {
        val = leaf;
      } else if (first) {
        val = tail[idx + 1];
      } else if (last) {
        val = head[idx - 1];
      } else {
        val = f1(head[idx - 1], tail[idx + 1]);
      }
      dfs2(dst, cur, f2(val, cur, dst));
      idx++;
    }
  }
};

/**
 * @brief Rerooting(全方位木DP)
 * @docs docs/tree/rerooting.md
 */


//


template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
  static_assert(r * mod == 1, "this code has bugs.");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }
  constexpr mint operator+() const { return mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  constexpr mint inverse() const {
    int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
    while (y > 0) {
      t = x / y;
      x -= t * y, u -= t * v;
      tmp = x, x = y, y = tmp;
      tmp = u, u = v, v = tmp;
    }
    return mint{u};
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }

  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};





using namespace std;

// コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」
// を入れると倍速くらいになる
// mod を超えて前計算して 0 割りを踏むバグは対策済み
template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) {
    assert(T::get_mod() != 0 && "Binomial<mint>()");
    f.resize(1, T{1});
    g.resize(1, T{1});
    h.resize(1, T{1});
    if (MAX > 0) extend(MAX + 1);
  }

  void extend(int m = -1) {
    int n = f.size();
    if (m == -1) m = n * 2;
    m = min<int>(m, T::get_mod());
    if (n >= m) return;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  // [x^r] 1 / (1-x)^n
  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};


//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;
// using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C;

using namespace Nyaan;

void q() {
  ini(N);
  auto g = graph(N);

  // 「T : 根が virtual である根付き木」に対応する情報を管理する
  using T = array<mint, 3>;
  // 空の状態に対応する情報
  T leaf{{0, 0, 0}};
  // T 同士をマージ
  auto f1 = [&](T x, T y) -> T {
    return T{{x[0] + y[0], x[1] + y[1], x[2] + y[2]}};
  };
  // T の根に頂点 c および辺 c-p を追加する (p は virtual)
  auto f2 = [&](T x, int, int) -> T {
    T res;
    res[0] = x[0] + 1;
    res[1] = x[1] + res[0] * res[0];
    res[2] = (-res[0] + N) * (-res[0] + N) * res[1];
    return res;
  };

  Rerooting<T, decltype(g), decltype(f1), decltype(f2)> dp(g, f1, f2, leaf);
  trc(dp.memo);
  trc(dp.dp);

  mint ans = 0;
  rep(i, N) ans += dp.dp[i][2];
  rep1(i, N - 1) {
    mint x = dp.memo[i][0] + 1;
    ans -= x * x * (-x + N) * (-x + N);
  }
  trc(ans);
  mint n2 = mint{N} * (N - 1) / 2;
  out(ans / n2 / n2);
}

void Nyaan::solve() {
  int t = 1;
  in(t);
  while (t--) q();
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3600kb

input:

2
3
1 2
2 3
5
1 2
1 5
3 2
4 2

output:

443664158
918384806

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 0ms
memory: 3524kb

input:

1000
7
3 6
4 3
5 3
2 6
1 4
7 1
12
5 7
10 7
2 10
11 2
1 7
8 1
4 2
9 11
6 9
12 11
3 5
6
2 5
1 2
4 5
6 4
3 6
5
2 5
1 5
4 5
3 2
8
1 8
2 8
4 2
6 1
5 6
7 6
3 8
8
3 8
7 3
4 8
6 4
2 7
5 2
1 4
4
3 1
4 3
2 1
6
5 1
6 1
2 5
3 5
4 2
12
8 11
5 11
12 8
3 12
6 12
2 3
4 6
10 11
1 5
9 5
7 5
9
6 1
7 6
4 7
8 7
5 4
9 6
...

output:

948445317
468414020
550143557
918384806
711758412
487662742
776412276
869581749
240852807
765628773
211048577
887328316
890334966
940494682
760637552
908032643
592850815
584006902
908525604
221832080
433351719
56023919
867301808
183319566
698771049
366957926
449579681
599710576
310564911
286902823
3...

result:

ok 1000 lines

Test #3:

score: 0
Accepted
time: 27ms
memory: 3512kb

input:

1000
94
59 1
33 59
73 1
6 33
83 59
4 59
20 59
61 6
39 1
76 73
71 6
44 39
9 71
24 4
87 9
57 83
2 9
81 71
82 20
90 2
85 39
12 9
30 83
66 30
53 9
47 9
36 44
43 53
29 12
31 53
64 81
38 31
84 82
77 38
23 71
93 84
78 83
58 31
68 90
42 1
55 64
13 78
70 78
62 24
19 55
92 87
14 57
10 84
65 81
63 6
75 36
91 1...

output:

508107725
996793960
201633249
335988372
842755864
460619380
342223697
207523414
429241811
391691799
542977964
786416604
454278948
685531402
25914978
440729774
228518323
679471537
82764520
554190841
432505337
143444089
189106586
337234245
61954935
905141094
532919674
703954588
185671863
942858630
692...

result:

ok 1000 lines

Test #4:

score: 0
Accepted
time: 351ms
memory: 36940kb

input:

10000
8
1 4
3 1
5 1
7 3
8 4
6 8
2 7
8
2 6
4 6
5 6
8 5
7 6
3 5
1 7
8
8 5
6 5
2 5
7 2
1 6
3 1
4 8
9
8 6
9 8
3 6
1 8
5 9
2 8
4 3
7 9
8
8 6
3 6
5 8
1 6
4 3
7 6
2 6
9
9 5
7 5
2 7
8 7
4 9
3 7
6 3
1 4
8
1 4
5 1
6 5
3 4
8 4
7 8
2 5
9
1 8
6 1
2 1
3 8
5 3
9 8
7 8
4 8
9
4 9
2 9
1 2
3 4
5 2
6 9
8 3
7 2
8
1 2
8 ...

output:

49657566
56023919
387074343
97051536
701572244
211048577
711758412
308100110
761007271
711758412
178698065
285212675
80216065
43380497
267677376
818005792
53239701
765628773
970145625
387074343
436731906
422725927
479157293
977872021
436731906
925779210
487662742
705549251
267677376
711758412
526851...

result:

ok 10000 lines

Test #5:

score: 0
Accepted
time: 356ms
memory: 36040kb

input:

10000
8
7 6
8 6
5 7
4 6
1 4
2 5
3 5
10
10 7
8 7
9 8
2 8
6 7
1 7
5 9
4 1
3 6
10
2 6
3 6
5 6
7 2
1 3
4 5
8 5
9 5
10 4
10
6 5
2 5
4 6
8 5
10 5
9 5
1 8
3 6
7 1
8
5 2
3 5
6 5
1 2
8 2
4 1
7 5
9
5 1
3 1
7 5
9 7
6 3
8 6
2 1
4 9
9
9 8
4 8
3 8
6 9
2 8
7 6
1 2
5 6
9
2 5
8 5
7 8
9 7
1 8
4 8
6 9
3 1
8
6 7
8 6
2 ...

output:

711758412
286902823
691130166
841483019
650641410
887328317
331207619
733278261
56023919
977872021
414394648
183319566
239374924
696059768
855285904
761007271
711758412
86268032
599710576
728310932
178698065
178698065
422725927
219002589
178698065
202450068
599710576
56023919
449579681
760637552
925...

result:

ok 10000 lines

Test #6:

score: 0
Accepted
time: 354ms
memory: 37672kb

input:

10000
9
8 1
2 8
4 1
3 2
7 1
6 7
9 3
5 1
9
7 5
1 7
3 7
9 5
2 3
8 1
6 8
4 6
9
7 8
4 7
5 4
3 4
6 8
1 3
9 8
2 7
9
8 7
2 8
9 8
5 8
1 2
3 7
6 3
4 7
8
6 8
4 6
2 4
5 8
7 5
1 6
3 7
9
9 8
7 8
2 9
5 9
1 5
3 1
6 2
4 8
10
2 10
4 10
6 4
1 10
9 6
8 9
5 10
7 4
3 2
10
3 9
5 3
4 3
7 9
6 3
10 6
2 9
8 5
1 2
10
8 5
2 8
...

output:

211048577
354315128
178698065
705549251
285212675
138645051
449579681
286902823
925779210
294297225
519087065
368179632
422725927
603876215
539175192
867301808
977540027
669439919
211048577
701572244
977872021
138645051
267677376
855285904
977872021
286902823
925286249
705549251
219002589
331207619
...

result:

ok 10000 lines

Test #7:

score: 0
Accepted
time: 338ms
memory: 32152kb

input:

10000
8
4 2
6 2
1 6
5 1
3 1
7 5
8 5
8
4 3
8 4
6 8
2 3
5 8
1 4
7 5
9
6 1
8 6
7 8
5 6
4 1
9 6
3 1
2 5
8
3 2
5 2
7 2
8 2
1 7
4 3
6 8
10
10 2
7 10
3 7
8 7
5 10
1 5
4 3
6 4
9 7
8
5 4
8 4
2 5
7 4
6 8
1 7
3 1
9
3 1
8 1
5 1
6 5
2 6
9 5
7 5
4 2
10
1 3
6 1
2 3
7 3
8 7
9 1
10 7
5 7
4 10
10
3 2
10 3
5 10
9 3
1 ...

output:

422725927
977872021
867301808
407446676
466833287
387074343
97051536
292325385
301691628
765628773
285212675
711758412
650641410
178698065
543242114
286902823
473241769
109930120
841975980
836553418
422725927
286902823
414394648
739440264
436731906
56023919
436731906
530918109
603876215
977872021
40...

result:

ok 10000 lines

Test #8:

score: 0
Accepted
time: 347ms
memory: 38648kb

input:

10000
9
9 3
7 9
2 3
5 2
6 2
1 9
4 5
8 9
10
4 6
9 4
8 6
5 4
10 5
7 8
2 8
3 7
1 2
10
5 4
1 4
3 4
9 3
6 3
7 9
8 7
2 4
10 7
10
3 8
4 3
10 8
6 10
9 4
5 6
2 8
1 2
7 5
10
10 9
4 9
6 10
5 10
2 6
1 10
3 1
8 3
7 10
10
9 7
10 7
2 7
3 10
1 3
4 3
8 9
6 3
5 6
9
2 4
7 4
5 7
9 5
3 5
6 7
8 7
1 2
9
2 4
1 4
9 2
7 2
8 ...

output:

409773147
306621231
836553418
760637552
519087065
304649390
97051536
742521264
387074343
855285904
874737082
358875008
733278261
698524570
908525604
387074343
970145625
449579681
286902823
239374924
650641410
691130166
765628773
603876215
839572800
977872021
742521264
908032643
874737082
299719788
7...

result:

ok 10000 lines

Test #9:

score: 0
Accepted
time: 361ms
memory: 35832kb

input:

10000
9
8 4
5 4
6 4
3 5
7 4
9 6
1 9
2 9
10
3 9
10 3
2 10
6 2
1 6
8 2
4 1
5 3
7 9
9
9 3
7 9
4 3
5 3
2 3
6 5
1 6
8 9
8
6 1
8 1
5 6
7 6
4 8
3 6
2 7
8
2 3
7 2
8 2
6 8
5 2
1 3
4 2
10
2 7
8 7
9 2
5 8
10 8
3 7
1 7
4 8
6 7
9
3 8
4 3
5 3
2 8
9 2
1 5
6 8
7 4
9
5 1
6 5
4 6
9 6
3 4
2 9
8 1
7 4
8
2 4
8 4
3 2
5 3...

output:

331207619
28098733
97051536
599710576
701572244
277043619
368179632
138645051
711758412
626059423
86268032
414394648
368179632
993314752
321410036
530918109
711758412
712327454
603876215
49657566
705549251
765628773
56023919
299719788
887328316
839572800
650641410
211048577
286902823
908032643
28690...

result:

ok 10000 lines

Test #10:

score: 0
Accepted
time: 346ms
memory: 33036kb

input:

10000
10
4 9
7 4
2 4
5 4
6 7
10 2
3 9
8 10
1 8
8
2 4
3 2
5 2
6 4
1 4
8 3
7 1
8
8 7
6 7
4 8
5 4
1 6
2 5
3 4
8
7 2
3 2
5 3
1 5
8 1
4 7
6 2
9
5 9
6 9
4 6
7 9
8 4
3 6
1 6
2 5
10
7 1
4 7
2 7
5 2
8 5
3 2
6 7
10 4
9 2
8
6 2
3 6
7 2
8 3
5 6
4 5
1 2
10
2 8
5 8
10 8
4 10
7 8
3 2
1 10
6 4
9 10
10
3 5
6 5
10 5
...

output:

440213438
977872021
285212675
285212675
705549251
267677376
436731906
267677376
440213438
712327454
711758412
191268549
321410036
436731906
839572800
49657566
519087065
178698065
977872021
285212675
574298605
368179632
466833287
696059768
86268033
308100110
487662742
887328317
977872021
701572244
99...

result:

ok 10000 lines

Test #11:

score: 0
Accepted
time: 344ms
memory: 31768kb

input:

10000
8
1 3
8 3
2 3
6 8
5 8
4 1
7 1
10
5 7
10 7
2 5
4 5
8 10
6 7
1 5
3 2
9 8
9
4 7
2 4
1 4
5 4
9 1
3 2
6 4
8 9
8
5 7
3 5
2 5
6 5
4 7
8 3
1 7
9
1 5
9 5
3 1
7 3
8 3
6 3
4 1
2 8
8
1 2
4 2
6 2
7 2
8 7
3 8
5 6
9
4 5
3 4
6 4
7 3
1 5
9 3
2 1
8 7
9
1 6
3 1
2 3
5 2
4 3
8 5
9 5
7 1
8
5 3
7 3
4 3
8 7
1 3
6 1
2...

output:

202450068
449579681
742521264
56023919
705549251
599710576
765628773
887328316
599710576
97051536
286902823
603876215
321410036
221832080
294297225
479157293
650641410
765628773
908525604
285212675
125704848
414394648
599254713
286902823
707938599
13864507
599710576
304649390
691130166
56023919
7656...

result:

ok 10000 lines

Test #12:

score: 0
Accepted
time: 0ms
memory: 3536kb

input:

1
2
1 2

output:

1

result:

ok single line: '1'

Extra Test:

score: 0
Extra Test Passed