QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#678135 | #9530. A Game On Tree | ucup-team055# | AC ✓ | 301ms | 17088kb | C++20 | 19.2kb | 2024-10-26 14:06:17 | 2024-10-26 14:06:27 |
Judging History
answer
#line 1 "f.cpp"
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
using ld=long double;
const ll ILL=2167167167167167167;
const int INF=2100000000;
#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)
#define all(p) p.begin(),p.end()
template<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;
template<class T> ll LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> ll UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> bool chmin(T &a,T b){if(a>b){a=b;return 1;}else return 0;}
template<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}
template<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}
template<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}
bool yneos(bool a,bool upp=0){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;}
template<class T> void vec_out(vector<T> &p,int ty=0){
if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'<<p[i]<<'"';}cout<<"}\n";}
else{if(ty==1){cout<<p.size()<<"\n";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout<<p[i];}cout<<"\n";}}
template<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}
template<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}
template<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}
int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}
template<class T> bool inside(T l,T x,T r){return l<=x&&x<r;}
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using mint = atcoder::modint998244353;
void solve();
// CYAN / FREDERIC
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t = 1;
cin >> t;
rep(i, 0, t) solve();
}
void solve(){
ll N;
cin >> N;
vector<vector<int>> G(N);
rep(i, 0, N - 1){
int a, b;
cin >> a >> b;
a--, b--;
G[a].push_back(b);
G[b].push_back(a);
}
vector<int> order = {0}, pare(N, -1);
pare[0] = -2;
rep(i, 0, N){
int a = order[i];
for (auto x : G[a]) if (pare[x] == -1){
pare[x] = a;
order.push_back(x);
}
}
vector dp(N, vector<mint>(3));
vector<ll> wei(N, 1);
mint ans = 0;
rep(rp, 0, N){
int a = order[N - 1 - rp];
dp[a][0] = 1;
for (auto x : G[a]) if (pare[x] == a){
vector<mint> n_dp(3);
rep(i, 0, 3) rep(j, 0, 3) if (i + j < 3){
n_dp[i + j] += dp[a][i] * dp[x][j];
}
wei[a] += wei[x];
n_dp[2] += dp[x][1] * (mint)((N - wei[x]) * (N - wei[x]));
swap(n_dp, dp[a]);
}
dp[a][1] += (mint)(wei[a] * wei[a]);
}
ans = dp[0][2];
ans *= 2;
rep(i, 1, N){
mint tmp = (N - wei[i]) * wei[i];
tmp *= tmp;
ans -= tmp;
}
mint tmp = N * (N - 1) / 2;
tmp *= tmp;
ans *= tmp.inv();
cout << ans.val() << "\n";
}
/*
2
3
1 2
2 3
5
1 2
1 5
3 2
4 2
*/
这程序好像有点Bug,我给组数据试试?
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 3808kb
input:
2 3 1 2 2 3 5 1 2 1 5 3 2 4 2
output:
443664158 918384806
result:
ok 2 lines
Test #2:
score: 0
Accepted
time: 2ms
memory: 3544kb
input:
1000 7 3 6 4 3 5 3 2 6 1 4 7 1 12 5 7 10 7 2 10 11 2 1 7 8 1 4 2 9 11 6 9 12 11 3 5 6 2 5 1 2 4 5 6 4 3 6 5 2 5 1 5 4 5 3 2 8 1 8 2 8 4 2 6 1 5 6 7 6 3 8 8 3 8 7 3 4 8 6 4 2 7 5 2 1 4 4 3 1 4 3 2 1 6 5 1 6 1 2 5 3 5 4 2 12 8 11 5 11 12 8 3 12 6 12 2 3 4 6 10 11 1 5 9 5 7 5 9 6 1 7 6 4 7 8 7 5 4 9 6 ...
output:
948445317 468414020 550143557 918384806 711758412 487662742 776412276 869581749 240852807 765628773 211048577 887328316 890334966 940494682 760637552 908032643 592850815 584006902 908525604 221832080 433351719 56023919 867301808 183319566 698771049 366957926 449579681 599710576 310564911 286902823 3...
result:
ok 1000 lines
Test #3:
score: 0
Accepted
time: 22ms
memory: 3504kb
input:
1000 94 59 1 33 59 73 1 6 33 83 59 4 59 20 59 61 6 39 1 76 73 71 6 44 39 9 71 24 4 87 9 57 83 2 9 81 71 82 20 90 2 85 39 12 9 30 83 66 30 53 9 47 9 36 44 43 53 29 12 31 53 64 81 38 31 84 82 77 38 23 71 93 84 78 83 58 31 68 90 42 1 55 64 13 78 70 78 62 24 19 55 92 87 14 57 10 84 65 81 63 6 75 36 91 1...
output:
508107725 996793960 201633249 335988372 842755864 460619380 342223697 207523414 429241811 391691799 542977964 786416604 454278948 685531402 25914978 440729774 228518323 679471537 82764520 554190841 432505337 143444089 189106586 337234245 61954935 905141094 532919674 703954588 185671863 942858630 692...
result:
ok 1000 lines
Test #4:
score: 0
Accepted
time: 297ms
memory: 16876kb
input:
10000 8 1 4 3 1 5 1 7 3 8 4 6 8 2 7 8 2 6 4 6 5 6 8 5 7 6 3 5 1 7 8 8 5 6 5 2 5 7 2 1 6 3 1 4 8 9 8 6 9 8 3 6 1 8 5 9 2 8 4 3 7 9 8 8 6 3 6 5 8 1 6 4 3 7 6 2 6 9 9 5 7 5 2 7 8 7 4 9 3 7 6 3 1 4 8 1 4 5 1 6 5 3 4 8 4 7 8 2 5 9 1 8 6 1 2 1 3 8 5 3 9 8 7 8 4 8 9 4 9 2 9 1 2 3 4 5 2 6 9 8 3 7 2 8 1 2 8 ...
output:
49657566 56023919 387074343 97051536 701572244 211048577 711758412 308100110 761007271 711758412 178698065 285212675 80216065 43380497 267677376 818005792 53239701 765628773 970145625 387074343 436731906 422725927 479157293 977872021 436731906 925779210 487662742 705549251 267677376 711758412 526851...
result:
ok 10000 lines
Test #5:
score: 0
Accepted
time: 280ms
memory: 16908kb
input:
10000 8 7 6 8 6 5 7 4 6 1 4 2 5 3 5 10 10 7 8 7 9 8 2 8 6 7 1 7 5 9 4 1 3 6 10 2 6 3 6 5 6 7 2 1 3 4 5 8 5 9 5 10 4 10 6 5 2 5 4 6 8 5 10 5 9 5 1 8 3 6 7 1 8 5 2 3 5 6 5 1 2 8 2 4 1 7 5 9 5 1 3 1 7 5 9 7 6 3 8 6 2 1 4 9 9 9 8 4 8 3 8 6 9 2 8 7 6 1 2 5 6 9 2 5 8 5 7 8 9 7 1 8 4 8 6 9 3 1 8 6 7 8 6 2 ...
output:
711758412 286902823 691130166 841483019 650641410 887328317 331207619 733278261 56023919 977872021 414394648 183319566 239374924 696059768 855285904 761007271 711758412 86268032 599710576 728310932 178698065 178698065 422725927 219002589 178698065 202450068 599710576 56023919 449579681 760637552 925...
result:
ok 10000 lines
Test #6:
score: 0
Accepted
time: 279ms
memory: 16864kb
input:
10000 9 8 1 2 8 4 1 3 2 7 1 6 7 9 3 5 1 9 7 5 1 7 3 7 9 5 2 3 8 1 6 8 4 6 9 7 8 4 7 5 4 3 4 6 8 1 3 9 8 2 7 9 8 7 2 8 9 8 5 8 1 2 3 7 6 3 4 7 8 6 8 4 6 2 4 5 8 7 5 1 6 3 7 9 9 8 7 8 2 9 5 9 1 5 3 1 6 2 4 8 10 2 10 4 10 6 4 1 10 9 6 8 9 5 10 7 4 3 2 10 3 9 5 3 4 3 7 9 6 3 10 6 2 9 8 5 1 2 10 8 5 2 8 ...
output:
211048577 354315128 178698065 705549251 285212675 138645051 449579681 286902823 925779210 294297225 519087065 368179632 422725927 603876215 539175192 867301808 977540027 669439919 211048577 701572244 977872021 138645051 267677376 855285904 977872021 286902823 925286249 705549251 219002589 331207619 ...
result:
ok 10000 lines
Test #7:
score: 0
Accepted
time: 290ms
memory: 16812kb
input:
10000 8 4 2 6 2 1 6 5 1 3 1 7 5 8 5 8 4 3 8 4 6 8 2 3 5 8 1 4 7 5 9 6 1 8 6 7 8 5 6 4 1 9 6 3 1 2 5 8 3 2 5 2 7 2 8 2 1 7 4 3 6 8 10 10 2 7 10 3 7 8 7 5 10 1 5 4 3 6 4 9 7 8 5 4 8 4 2 5 7 4 6 8 1 7 3 1 9 3 1 8 1 5 1 6 5 2 6 9 5 7 5 4 2 10 1 3 6 1 2 3 7 3 8 7 9 1 10 7 5 7 4 10 10 3 2 10 3 5 10 9 3 1 ...
output:
422725927 977872021 867301808 407446676 466833287 387074343 97051536 292325385 301691628 765628773 285212675 711758412 650641410 178698065 543242114 286902823 473241769 109930120 841975980 836553418 422725927 286902823 414394648 739440264 436731906 56023919 436731906 530918109 603876215 977872021 40...
result:
ok 10000 lines
Test #8:
score: 0
Accepted
time: 283ms
memory: 17056kb
input:
10000 9 9 3 7 9 2 3 5 2 6 2 1 9 4 5 8 9 10 4 6 9 4 8 6 5 4 10 5 7 8 2 8 3 7 1 2 10 5 4 1 4 3 4 9 3 6 3 7 9 8 7 2 4 10 7 10 3 8 4 3 10 8 6 10 9 4 5 6 2 8 1 2 7 5 10 10 9 4 9 6 10 5 10 2 6 1 10 3 1 8 3 7 10 10 9 7 10 7 2 7 3 10 1 3 4 3 8 9 6 3 5 6 9 2 4 7 4 5 7 9 5 3 5 6 7 8 7 1 2 9 2 4 1 4 9 2 7 2 8 ...
output:
409773147 306621231 836553418 760637552 519087065 304649390 97051536 742521264 387074343 855285904 874737082 358875008 733278261 698524570 908525604 387074343 970145625 449579681 286902823 239374924 650641410 691130166 765628773 603876215 839572800 977872021 742521264 908032643 874737082 299719788 7...
result:
ok 10000 lines
Test #9:
score: 0
Accepted
time: 294ms
memory: 17088kb
input:
10000 9 8 4 5 4 6 4 3 5 7 4 9 6 1 9 2 9 10 3 9 10 3 2 10 6 2 1 6 8 2 4 1 5 3 7 9 9 9 3 7 9 4 3 5 3 2 3 6 5 1 6 8 9 8 6 1 8 1 5 6 7 6 4 8 3 6 2 7 8 2 3 7 2 8 2 6 8 5 2 1 3 4 2 10 2 7 8 7 9 2 5 8 10 8 3 7 1 7 4 8 6 7 9 3 8 4 3 5 3 2 8 9 2 1 5 6 8 7 4 9 5 1 6 5 4 6 9 6 3 4 2 9 8 1 7 4 8 2 4 8 4 3 2 5 3...
output:
331207619 28098733 97051536 599710576 701572244 277043619 368179632 138645051 711758412 626059423 86268032 414394648 368179632 993314752 321410036 530918109 711758412 712327454 603876215 49657566 705549251 765628773 56023919 299719788 887328316 839572800 650641410 211048577 286902823 908032643 28690...
result:
ok 10000 lines
Test #10:
score: 0
Accepted
time: 293ms
memory: 16908kb
input:
10000 10 4 9 7 4 2 4 5 4 6 7 10 2 3 9 8 10 1 8 8 2 4 3 2 5 2 6 4 1 4 8 3 7 1 8 8 7 6 7 4 8 5 4 1 6 2 5 3 4 8 7 2 3 2 5 3 1 5 8 1 4 7 6 2 9 5 9 6 9 4 6 7 9 8 4 3 6 1 6 2 5 10 7 1 4 7 2 7 5 2 8 5 3 2 6 7 10 4 9 2 8 6 2 3 6 7 2 8 3 5 6 4 5 1 2 10 2 8 5 8 10 8 4 10 7 8 3 2 1 10 6 4 9 10 10 3 5 6 5 10 5 ...
output:
440213438 977872021 285212675 285212675 705549251 267677376 436731906 267677376 440213438 712327454 711758412 191268549 321410036 436731906 839572800 49657566 519087065 178698065 977872021 285212675 574298605 368179632 466833287 696059768 86268033 308100110 487662742 887328317 977872021 701572244 99...
result:
ok 10000 lines
Test #11:
score: 0
Accepted
time: 301ms
memory: 16572kb
input:
10000 8 1 3 8 3 2 3 6 8 5 8 4 1 7 1 10 5 7 10 7 2 5 4 5 8 10 6 7 1 5 3 2 9 8 9 4 7 2 4 1 4 5 4 9 1 3 2 6 4 8 9 8 5 7 3 5 2 5 6 5 4 7 8 3 1 7 9 1 5 9 5 3 1 7 3 8 3 6 3 4 1 2 8 8 1 2 4 2 6 2 7 2 8 7 3 8 5 6 9 4 5 3 4 6 4 7 3 1 5 9 3 2 1 8 7 9 1 6 3 1 2 3 5 2 4 3 8 5 9 5 7 1 8 5 3 7 3 4 3 8 7 1 3 6 1 2...
output:
202450068 449579681 742521264 56023919 705549251 599710576 765628773 887328316 599710576 97051536 286902823 603876215 321410036 221832080 294297225 479157293 650641410 765628773 908525604 285212675 125704848 414394648 599254713 286902823 707938599 13864507 599710576 304649390 691130166 56023919 7656...
result:
ok 10000 lines
Test #12:
score: 0
Accepted
time: 0ms
memory: 3628kb
input:
1 2 1 2
output:
1
result:
ok single line: '1'
Extra Test:
score: 0
Extra Test Passed