QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#676884 | #5465. Maximum GCD | iamarman | WA | 0ms | 3880kb | C++23 | 8.6kb | 2024-10-26 02:12:11 | 2024-10-26 02:12:12 |
Judging History
answer
// Bismillahir Rahmanir Rahim //
// After hardship comes ease //
// AUTHOR : iamarman //
// pragmas
// #pragma GCC optimize("Ofast")
// #pragma GCC target("avx,avx2,fma")
// #pragma GCC optimization ("unroll-loops")
// #pragma GCC optimization ("strict-overflow")
#include<bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;
using namespace __gnu_pbds;
//// TEMPLATE ////
//---------------------------------------------------------------------------------------------------------------------------------|
# define el '\n'
# define sp " "
# define ff first
# define ss second
# define ll long long
# define pb push_back
# define mp make_pair
# define yess1 cout<<1<<el
# define noo cout<<"NO"<<el
# define yess cout<<"YES"<<el
# define siz(x) (int)x.size()
# define ull unsigned long long
# define all(v) v.begin(),v.end()
# define allr(v) v.rbegin(),v.rend()
# define torad(x) ((x) * ((2*acos(0))/180.0))
# define todeg(x) ((x) * (180.0/(2*acos(0))))
constexpr ll mod=1000000000+7;
constexpr ll INF=LLONG_MAX;
constexpr double PI= acos(-1);
constexpr double eps=1e-9;
# define mem(a,b) memset(a,b,sizeof(a))
# define sqr(a) ((a)*(a))
# define lcm(a,b) (a*b)/__gcd(a,b)
# define optimise { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); }
# define fraction(a) cout.unsetf(ios::floatfield); cout.precision(a); cout.setf(ios::fixed,ios::floatfield);
# define ordered_set tree<ll, null_type,less<ll>, rb_tree_tag,tree_order_statistics_node_update>
// find_by_order() - Returns an iterator to the k-th largest element (counting from zero)
// order_of_key() - The number of items in a set that are strictly smaller than our item
// greater instead of less for descending order
// less_equal works as ordered multiset
// we can use pair<int,int> instead of int for pair of orderd set
// for multiset st.lower_bound(x) works as upper bound and st.upper_bound(x) works as lower bound
inline void file() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif // ONLINE_JUDGE
}
//----------------------------------------------------------------------------------------------------------------------------------|
// DEBUGGER //
//----------------------------------------------------------------------------------------------------------------------------------|
template < typename F, typename S > ostream& operator << ( ostream& os, const pair< F, S > & p ) { return os << "(" << p.first << ", " << p.second << ")"; }
template < typename T > ostream &operator << ( ostream & os, const vector< T > &v ) { os << "{"; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << *it; } return os << "}"; }
template < typename T > ostream &operator << ( ostream & os, const set< T > &v ) { os << "["; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << *it; } return os << "]"; }
template < typename T > ostream &operator << ( ostream & os, const multiset< T > &v ) { os << "["; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << *it; } return os << "]"; }
template < typename F, typename S > ostream &operator << ( ostream & os, const map< F, S > &v ) { os << "["; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << it -> first << " = " << it -> second ; } return os << "]"; }
#define dbg(args...) do {cerr << #args << " : "; iamarman(args); } while(0)
void iamarman () { cerr << endl; }
template <typename T> void iamarman( T a[], int n ) { for(int i = 0; i < n; ++i) cerr << a[i] << ' '; cerr << endl; }
template <typename T, typename ... hello> void iamarman( T arg, const hello &... rest) { cerr << arg << ' '; iamarman(rest...); }
//--------------------------------------------------------------------------------------------------------------------------------------|
///// FUNCTIONS /////
ll bigmod(ll base,ll power){ ll res=1; ll p=base%mod; while(power>0) { if(power%2==1) { res=((res%mod)*(p%mod))%mod; } power/=2; p=((p%mod)*(p%mod))%mod; } return res; }
ll inversemod(ll base) { return bigmod(base,mod-2); }
ll poww(ull a,ull b) { ull ans=1; if(!b) return 1; while(b>1) { if(b&1) { ans=ans*a%mod; } a=a*a%mod; b/=2; }return a*ans%mod; }
ll gcd(ll a,ll b) { ll rem; while(b%a!=0) { rem=b%a; b=a; a=rem; } return a; }
ll sqrtt(ll a){ long long x = sqrt(a) + 2; while (x * x > a) x--; return x;}
ll sqrt(ll n) {ll low=0,high=1e10; while(high-low>1){ ll mid=low+(high-low)/2; if(mid*mid<=n) low=mid; else high=mid; }return low; }
long double sqrtd(long double n){ long double low=0,high=n,mid; for(int i=0;i<100;i++) { mid=(low+high)/2; if(mid*mid<=n) low=mid; else high=mid;} return low;}
mt19937 rng(chrono::high_resolution_clock::now().time_since_epoch().count());
inline ll getrandom(ll a,ll b) { return uniform_int_distribution<ll>(a,b)(rng); }
int dx[]={-1, 1 , 0 , 0 , -1 ,-1, 1, 1};
int dy[]={ 0, 0 ,-1 , 1 , -1 , 1,-1, 1};
// up = { -1,0 } , down = { 1,0 } , right = { 0,1 } , left = { 0,-1 }
// up-right = { -1,1 } , up-left = { -1,-1 } , down-right = { 1,1 } , down-left = { 1,-1 }
/// ____________CODE STARTS FROM HERE____________ ///
class DSU{
vector<int> parent,size; // parent and size
int comp; // number of component
public:
DSU(int n)
{
parent.resize(n+1,0); // resizing parent
size.resize(n+1,1); // resizing size
for(int i=0;i<=n;i++)
{
parent[i]=i; // initializing parent of every node itself
}
comp=n; // initially number of component is n
}
int findUpar(int node)
{
if(node==parent[node])
{
return node; // if parent of that node it itself returns
}
return parent[node]=findUpar(parent[node]); // compress the path makes ultimate parent as parent to every connected node was traverse during finding ultimate parent
}
void unionBysize(int u,int v)
{
int ulpar_u=findUpar(u); // finding ultimate parent of u and v
int ulpar_v=findUpar(v);
if(ulpar_u==ulpar_v) // if both are in same componet then return
{
return;
}
if(size[ulpar_u]>size[ulpar_v]) // if size of ultimate parent of u is greater than or equal to v then make ultimate parent of v as u
{
parent[ulpar_v]=ulpar_u;
size[ulpar_u]+=size[ulpar_v]; // increase the size of ultimate parent of u by adding size of ultimate parent of v
}
else // else make ultimate parent of u as v
{
parent[ulpar_u]=ulpar_v;
size[ulpar_v]+=size[ulpar_u];
}
comp--; // decrease the number of component
}
int getComp()
{
return comp; // return number of component
}
};
void solve()
{
int n;
cin>>n;
vector<int> vec(n+1);
int gc=0;
int mn=INT_MAX;
for(int i=1;i<=n;i++)
{
cin>>vec[i];
gc=__gcd(gc,vec[i]);
mn=min(mn,vec[i]);
}
sort(all(vec));
vector<int> v;
for(int i=2;i<=mn/i;i++)
{
if(mn%i==0)
{
v.pb(i);
if(i!=mn/i) v.pb(mn/i);
}
}
sort(allr(v));
for(auto x : v)
{
bool ok=true;
for(int i=1;i<=n;i++)
{
if(vec[i]%x==0) continue;
if(vec[i]<2*x)
{
ok=false;
break;
}
}
if(ok)
{
cout<<max(x,gc)<<el;
return;
}
}
cout<<gc<<el;
}
int main()
{
optimise;
file();
clock_t start= clock();
int t=1;
// cin>>t;
for(int i=1;i<=t;i++)
{
// cout<<"Case "<<i<<": ";
solve();
}
// cerr << "Run Time : " <<((double)(clock() - start) / CLOCKS_PER_SEC)<<el;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 0
Wrong Answer
time: 0ms
memory: 3880kb
input:
3 3 10 7
output:
1
result:
wrong answer 1st numbers differ - expected: '3', found: '1'