QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#676884#5465. Maximum GCDiamarmanWA 0ms3880kbC++238.6kb2024-10-26 02:12:112024-10-26 02:12:12

Judging History

你现在查看的是最新测评结果

  • [2024-10-26 02:12:12]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3880kb
  • [2024-10-26 02:12:11]
  • 提交

answer

                                                  //   Bismillahir Rahmanir Rahim      //
                                                 //     After hardship comes ease     //
                                                //         AUTHOR : iamarman         //

// pragmas
// #pragma GCC optimize("Ofast")
// #pragma GCC target("avx,avx2,fma")
// #pragma GCC optimization ("unroll-loops")
// #pragma GCC optimization ("strict-overflow")
 
#include<bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;

                                                    ////       TEMPLATE       ////

//---------------------------------------------------------------------------------------------------------------------------------|


# define    el '\n'
# define    sp " "
# define    ff first
# define    ss second
# define    ll long long
# define    pb push_back
# define    mp make_pair
# define    yess1 cout<<1<<el 
# define    noo cout<<"NO"<<el
# define    yess cout<<"YES"<<el
# define    siz(x) (int)x.size()
# define    ull unsigned long long    
# define    all(v) v.begin(),v.end()
# define    allr(v) v.rbegin(),v.rend()
# define    torad(x) ((x) * ((2*acos(0))/180.0))
# define    todeg(x) ((x) * (180.0/(2*acos(0))))

constexpr ll mod=1000000000+7;
constexpr ll INF=LLONG_MAX;
constexpr double PI= acos(-1);
constexpr double eps=1e-9;

# define mem(a,b) memset(a,b,sizeof(a))
# define sqr(a) ((a)*(a))
# define lcm(a,b) (a*b)/__gcd(a,b)

# define optimise   { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); }
# define fraction(a) cout.unsetf(ios::floatfield); cout.precision(a); cout.setf(ios::fixed,ios::floatfield);
# define ordered_set tree<ll, null_type,less<ll>, rb_tree_tag,tree_order_statistics_node_update>

// find_by_order() - Returns an iterator to the k-th largest element (counting from zero)
// order_of_key()  - The number of items in a set that are strictly smaller than our item 
// greater instead of less for descending order
// less_equal works as ordered multiset
// we can use pair<int,int> instead of int for pair of orderd set
// for multiset st.lower_bound(x) works as upper bound and st.upper_bound(x) works as lower bound

inline void file() {
#ifndef ONLINE_JUDGE  
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif // ONLINE_JUDGE
}
//----------------------------------------------------------------------------------------------------------------------------------|


                                                               // DEBUGGER //


//----------------------------------------------------------------------------------------------------------------------------------|

template < typename F, typename S > ostream& operator << ( ostream& os, const pair< F, S > & p ) { return os << "(" << p.first << ", " << p.second << ")"; }
template < typename T > ostream &operator << ( ostream & os, const vector< T > &v ) { os << "{"; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", ";  os << *it; }  return os << "}";  }
template < typename T >  ostream &operator << ( ostream & os, const set< T > &v ) { os << "["; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << *it;  } return os << "]"; }
template < typename T > ostream &operator << ( ostream & os, const multiset< T > &v ) { os << "["; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << *it; } return os << "]"; }
template < typename F, typename S > ostream &operator << ( ostream & os, const map< F, S > &v ) { os << "["; for(auto it = v.begin(); it != v.end(); ++it) { if( it != v.begin() ) os << ", "; os << it -> first << " = " << it -> second ; } return os << "]";  }
#define dbg(args...) do {cerr << #args << " : "; iamarman(args); } while(0)
void iamarman () { cerr << endl; }
template <typename T> void iamarman( T a[], int n ) {   for(int i = 0; i < n; ++i) cerr << a[i] << ' '; cerr << endl;  }
template <typename T, typename ... hello>  void iamarman( T arg, const hello &... rest) {   cerr << arg << ' ';  iamarman(rest...);  }

//--------------------------------------------------------------------------------------------------------------------------------------|



                                                           /////    FUNCTIONS     /////



ll bigmod(ll base,ll power){ ll res=1; ll p=base%mod; while(power>0) { if(power%2==1) {  res=((res%mod)*(p%mod))%mod; }  power/=2; p=((p%mod)*(p%mod))%mod; } return res; }

ll inversemod(ll base) { return bigmod(base,mod-2); }

ll poww(ull a,ull b) { ull ans=1; if(!b) return 1; while(b>1) {  if(b&1) { ans=ans*a%mod; } a=a*a%mod; b/=2; }return a*ans%mod; }

ll gcd(ll a,ll b) { ll rem; while(b%a!=0)  {  rem=b%a;  b=a;  a=rem; } return a; }

ll sqrtt(ll a){ long long x = sqrt(a) + 2; while (x * x > a) x--; return x;}

ll sqrt(ll n) {ll low=0,high=1e10; while(high-low>1){ ll mid=low+(high-low)/2; if(mid*mid<=n) low=mid; else high=mid; }return low; }

long double sqrtd(long double n){ long double low=0,high=n,mid; for(int i=0;i<100;i++) { mid=(low+high)/2; if(mid*mid<=n) low=mid; else high=mid;} return low;}

mt19937 rng(chrono::high_resolution_clock::now().time_since_epoch().count());

inline ll getrandom(ll a,ll b) { return uniform_int_distribution<ll>(a,b)(rng); }

 
int dx[]={-1, 1 , 0 , 0 , -1 ,-1, 1, 1};
int dy[]={ 0, 0 ,-1 , 1 , -1 , 1,-1, 1};

// up = { -1,0 } , down = { 1,0 } , right = { 0,1 } , left = { 0,-1 }
// up-right = { -1,1 } , up-left = { -1,-1 } , down-right = { 1,1 } , down-left = { 1,-1 }




                                                   ///  ____________CODE STARTS FROM HERE____________    ///

class DSU{
    vector<int> parent,size;  // parent and size
    int comp; // number of component
public:
    DSU(int n)
    {
        parent.resize(n+1,0); // resizing parent
        size.resize(n+1,1); // resizing size
        for(int i=0;i<=n;i++)
        {
            parent[i]=i;  // initializing parent of every node itself
        }
        comp=n;  // initially number of component is n
    }

    int findUpar(int node)
    {
        if(node==parent[node])
        {
            return node;  // if parent of that node it itself returns
        }

        return parent[node]=findUpar(parent[node]);  // compress the path makes ultimate parent as parent to every connected node was traverse during finding ultimate parent
    }

    void unionBysize(int u,int v)
    {
        int ulpar_u=findUpar(u);  // finding ultimate parent of u and v
        int ulpar_v=findUpar(v);

        if(ulpar_u==ulpar_v)  // if both are in same componet then return
        {
            return;
        }
        if(size[ulpar_u]>size[ulpar_v])  // if size of ultimate parent of u is greater than or equal to  v then make ultimate parent of v as u
        {
            parent[ulpar_v]=ulpar_u;
            size[ulpar_u]+=size[ulpar_v];  // increase the size of ultimate parent of u by adding size of ultimate parent of v
        }
        else  // else make ultimate parent of u as v
        {
            parent[ulpar_u]=ulpar_v;
            size[ulpar_v]+=size[ulpar_u];
        }

        comp--;  // decrease the number of component
       
    }

    int getComp()
    {
        return comp;  // return number of component
    }
  

};



void solve()
{
     int n;
     cin>>n;
     vector<int> vec(n+1);
     int gc=0;
     int mn=INT_MAX;
     for(int i=1;i<=n;i++) 
     {
         cin>>vec[i];
         gc=__gcd(gc,vec[i]);
         mn=min(mn,vec[i]);
     }

     sort(all(vec));

     vector<int> v;
	for(int i=2;i<=mn/i;i++)
     {
            if(mn%i==0)
            {
                v.pb(i);
                if(i!=mn/i) v.pb(mn/i);
            }
     }


     sort(allr(v));

     for(auto x : v)
     {
           bool ok=true;
           for(int i=1;i<=n;i++)
           {
                if(vec[i]%x==0) continue;
                if(vec[i]<2*x) 
                {
                    ok=false;
                    break;
                }
           }
           if(ok)
           {
                cout<<max(x,gc)<<el;
                return;
           }
     }

     cout<<gc<<el;

     
}


int main()
{ 
    optimise;
    file();

    clock_t start= clock();
    int t=1;
   // cin>>t;
    for(int i=1;i<=t;i++)
    {
       // cout<<"Case "<<i<<": ";
        solve();
       
    }
 //   cerr << "Run Time : " <<((double)(clock() - start) / CLOCKS_PER_SEC)<<el;
  
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 0
Wrong Answer
time: 0ms
memory: 3880kb

input:

3
3 10 7

output:

1

result:

wrong answer 1st numbers differ - expected: '3', found: '1'