QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#674321 | #8237. Sugar Sweet II | wlmrh | WA | 177ms | 3656kb | C++20 | 4.4kb | 2024-10-25 15:12:36 | 2024-10-25 15:12:37 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
template<class T>
constexpr T power(T a, i64 b) {
T res = 1;
for (; b; b /= 2, a *= a) {
if (b % 2) {
res *= a;
}
}
return res;
}
constexpr i64 mul(i64 a, i64 b, i64 p) {
i64 res = a * b - i64(1.L * a * b / p) * p;
res %= p;
if (res < 0) {
res += p;
}
return res;
}
template<int P>
struct MInt {
int x;
constexpr MInt() : x{} {}
constexpr MInt(i64 x) : x{norm(x % getMod())} {}
static int Mod;
constexpr static int getMod() {
if (P > 0) {
return P;
} else {
return Mod;
}
}
constexpr static void setMod(int Mod_) {
Mod = Mod_;
}
constexpr int norm(int x) const {
if (x < 0) {
x += getMod();
}
if (x >= getMod()) {
x -= getMod();
}
return x;
}
constexpr int val() const {
return x;
}
explicit constexpr operator int() const {
return x;
}
constexpr MInt operator-() const {
MInt res;
res.x = norm(getMod() - x);
return res;
}
constexpr MInt inv() const {
assert(x != 0);
return power(*this, getMod() - 2);
}
constexpr MInt &operator*=(MInt rhs) & {
x = 1LL * x * rhs.x % getMod();
return *this;
}
constexpr MInt &operator+=(MInt rhs) & {
x = norm(x + rhs.x);
return *this;
}
constexpr MInt &operator-=(MInt rhs) & {
x = norm(x - rhs.x);
return *this;
}
constexpr MInt &operator/=(MInt rhs) & {
return *this *= rhs.inv();
}
friend constexpr MInt operator*(MInt lhs, MInt rhs) {
MInt res = lhs;
res *= rhs;
return res;
}
friend constexpr MInt operator+(MInt lhs, MInt rhs) {
MInt res = lhs;
res += rhs;
return res;
}
friend constexpr MInt operator-(MInt lhs, MInt rhs) {
MInt res = lhs;
res -= rhs;
return res;
}
friend constexpr MInt operator/(MInt lhs, MInt rhs) {
MInt res = lhs;
res /= rhs;
return res;
}
friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
i64 v;
is >> v;
a = MInt(v);
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
return os << a.val();
}
friend constexpr bool operator==(MInt lhs, MInt rhs) {
return lhs.val() == rhs.val();
}
friend constexpr bool operator!=(MInt lhs, MInt rhs) {
return lhs.val() != rhs.val();
}
};
template<>
int MInt<0>::Mod = 998244353;
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
constexpr int P = 1000000007;
using Z = MInt<P>;
void solve()
{
int n; cin >> n;
vector<int> a(n + 1), b(n + 1), w(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
for (int i = 1; i <= n; i++)
{
cin >> b[i];
}
for (int i = 1; i <= n; i++)
{
cin >> w[i];
}
vector<Z> fac(n + 1); fac[1] = 1;
for (int i = 2; i <= n; i++)
{
fac[i] = fac[i - 1] * i;
}
vector<vector<int>> graph(n + 1);
// 寻找那些已经确定的人员,将不确定的人员加入基环图中
vector<Z> ans(n + 1);
queue<pair<int, int>> q; // 序号 - 深度
for (int i = 1; i <= n; i++)
{
int other = b[i];
ans[i] = a[i];
if (a[other] + w[other] <= a[i])
{
q.push({i, 1});
continue;
}
if (a[other] > a[i])
{
ans[i] += w[i];
q.push({i, 1});
continue;
}
graph[other].push_back(i);
}
while (!q.empty())
{
auto p = q.front(); q.pop();
if (graph[p.first].empty()) continue;
for (auto i : graph[p.first])
{
q.push({i, p.second + 1});
ans[i] += Z(1) / fac[p.second + 1] * w[i];
}
}
for (int i = 1; i <= n; i++)
{
cout << ans[i] << " ";
}
cout << endl;
}
int main()
{
ios::sync_with_stdio(false); cin.tie(nullptr);
int t; cin >> t;
while (t--)
{
solve();
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3616kb
input:
4 4 2 5 5 2 4 2 1 3 3 2 1 4 3 5 4 3 1 1 1 6 6 6 3 5 4 3 2 3 1 1 2 3 5 2 1 3 2 1 5 1 1 3 4 1 3 4 2 4
output:
500000007 5 5 6 5 10 9 166666673 5 6 500000006 4 3 4 5
result:
ok 15 numbers
Test #2:
score: -100
Wrong Answer
time: 177ms
memory: 3656kb
input:
50000 5 508432375 168140163 892620793 578579275 251380640 3 4 4 1 3 346232959 736203130 186940774 655629320 607743104 1 863886789 1 364158084 18 864679185 463975750 558804051 604216585 694033700 499417132 375390750 337590759 467353355 111206671 983760005 984444619 322277587 138763925 205122047 97736...
output:
854665334 904343293 590444253 906393935 859123744 863886789 871186919 814243920 968784984 206455474 17527050 449261413 196759729 901433117 519383814 907574792 983760005 984444619 489899014 435736558 113628626 977360756 482247153 963066959 665922935 577926775 132646723 421298438 601054667 99438820...
result:
wrong answer 67th numbers differ - expected: '777692470', found: '416086330'