QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#673685#9254. Random VariablesCryingAC ✓226ms43204kbC++1416.2kb2024-10-25 08:55:102024-10-25 08:55:13

Judging History

你现在查看的是最新测评结果

  • [2024-10-25 08:55:13]
  • 评测
  • 测评结果:AC
  • 用时:226ms
  • 内存:43204kb
  • [2024-10-25 08:55:10]
  • 提交

answer

#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops")

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
using mint = atcoder::modint;
const int N = 2010;
int n,m,k,mod;

mint sum[N],fac[N],rfac[N],pre[N],ans;
mint f[N],g[N],bpw[N/2][N],pw[N/2][N];
mint C[N][N],w[N/2][N];

void solve(){
    cin>>n>>m; ans = 0;

    fac[0] = 1; for(int i=1;i<=n;i++)fac[i] = fac[i-1] * i;

    pre[0] = 1; for(int i=1;i<=n;i++)pre[i] = pre[i-1] * (m-i+1);
    sum[1] = pre[n]; sum[n] = mint(m).pow(n);

    for(int i=0;i<=n;i++){
        C[i][0] = 1;
        for(int j=1;j<=i;j++)C[i][j] = C[i-1][j-1] + C[i-1][j];
    }

    for(int i=0;i<=min(m,n/2);i++){
        bpw[i][0] = 1;
        for(int j=1;j<=n;j++)bpw[i][j] = bpw[i][j-1] * (m-i);
    }
    for(int i=1;i<=n/2;i++){
        pw[i][0] = 1;
        for(int j=1;j<=n;j++)pw[i][j] = pw[i][j-1] * i;
    }
    for(int i=1;i<=n/2;i++)for(int j=0;j<=n;j++)w[i][j] = bpw[i][n-j] * C[n][j];
    for(int c=1;c<n;c++){ 
        mint& res = sum[c]; res = 0;
        k = n/(c+1);
        for(int i=0;i<=n;i++)g[i] = 0; g[0] = 1;
        res = sum[n];

        mint mul = 1;
        for(int i=1;i<=k;i++){
            if(i>m)break;
            mul *= (m-i+1);
            int s = i*(c+1);
            for(int j=s;j<=n;j++){
                int nj = j-(c+1); 
                f[j] = g[nj] * C[c+nj][nj];
            }
            mint tmp = 0,sum = 0;
            for(int j=s;j<=n;j++){
                tmp = tmp * i + f[j];
                g[j] = tmp,sum += tmp * w[i][j];
            }
            if(i&1)sum *= -1;
            res += sum * mul;
        }
    }
    for(int i=1;i<=n;i++)ans += i * (sum[i] - sum[i-1]);
    cout<<ans.val()<<endl;
}

int T;
int main(){
    cin>>T>>mod; mint::set_mod(mod);
    while(T--)solve();
    return 0;
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 3ms
memory: 43072kb

input:

3 123456789
3 2
5 5
7 7

output:

18
7145
2066323

result:

ok 3 lines

Test #2:

score: 0
Accepted
time: 13ms
memory: 43120kb

input:

100 2
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0

result:

ok 100 lines

Test #3:

score: 0
Accepted
time: 14ms
memory: 43052kb

input:

100 3
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
0
1
2
0
1
2
0
1
2
0
0
2
0
0
2
0
0
2
0
0
0
0
0
0
0
0
0
0
1
2
0
1
2
0
1
2
0
1
2
2
0
2
2
0
2
2
0
2
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
2
2
0
2
2
0
2
2
0
2
0
0
0
0
0
0
0
0
0
0
1
2
0
1
2
0
1
2
0
1

result:

ok 100 lines

Test #4:

score: 0
Accepted
time: 14ms
memory: 43172kb

input:

100 4
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
0
1
2
3
0
1
2
2
2
0
0
2
2
0
0
2
2
3
2
3
0
3
2
3
0
3
2
0
0
0
0
0
0
0
0
0
0
1
2
3
0
1
2
3
0
1
2
2
0
2
0
2
0
2
0
2
0
3
0
3
0
3
0
3
0
3
0
0
0
0
0
0
0
0
0
0
0
1
2
3
0
1
2
3
0
1
2
2
0
2
0
2
0
2
0
2
0

result:

ok 100 lines

Test #5:

score: 0
Accepted
time: 7ms
memory: 43196kb

input:

100 5
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
0
1
2
3
4
0
2
1
2
0
0
2
1
2
0
0
3
3
1
3
0
3
3
1
3
0
4
4
2
4
0
4
4
2
4
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
0
1
2
3
4
0
2
3
3
2
0
2
3
3
2
0
3
4
1
2
0
3
4
1
2
0
4
4
4
4
0
4
4
4
4
0
0
0
0
0
0
0
0
0
0
0

result:

ok 100 lines

Test #6:

score: 0
Accepted
time: 10ms
memory: 43112kb

input:

100 6
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
5
0
1
2
3
4
2
0
0
2
0
0
2
0
0
2
3
0
3
0
3
0
3
0
3
0
4
2
0
4
2
0
4
2
0
4
5
2
3
2
5
0
5
2
3
2
0
0
0
0
0
0
0
0
0
0
1
0
3
4
3
0
1
0
3
4
2
2
0
2
2
0
2
2
0
2
3
0
3
0
3
0
3
0
3
0
4
2
0
4
2
0
4
2
0
4

result:

ok 100 lines

Test #7:

score: 0
Accepted
time: 11ms
memory: 43104kb

input:

100 7
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
5
6
0
1
2
3
2
6
5
6
2
0
0
2
6
5
3
4
2
3
6
3
0
3
4
2
4
2
3
5
2
5
0
4
2
3
5
5
3
6
5
4
0
5
5
3
6
0
6
1
1
6
0
6
0
6
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
0
1
2
3
2
1
4
4
1
2
0
2
1
4
3
3
4
3
4
4
0
3
3
4

result:

ok 100 lines

Test #8:

score: 0
Accepted
time: 4ms
memory: 43112kb

input:

100 8
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
5
6
7
0
1
2
2
6
4
4
6
2
0
0
2
6
3
2
3
4
3
6
3
0
3
2
4
4
0
0
4
4
0
0
4
4
5
6
3
4
1
2
7
0
5
6
6
4
6
0
6
4
6
0
6
4
7
4
3
0
7
4
3
0
7
4
0
0
0
0
0
0
0
0
0
0
1
6
3
4
5
2
7
0
1
6
2
4
6
0
2
4
6
0
2
4

result:

ok 100 lines

Test #9:

score: 0
Accepted
time: 17ms
memory: 43036kb

input:

100 9
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 2...

output:

1
2
3
4
5
6
7
8
0
1
2
6
3
2
3
6
2
0
0
2
3
0
6
0
6
3
6
3
0
3
4
8
3
4
5
6
4
2
0
4
5
2
0
2
8
0
8
5
0
5
6
0
0
6
0
0
6
0
0
6
7
3
6
1
3
3
4
3
0
7
8
8
6
5
8
3
2
8
0
8
0
0
0
0
0
0
0
0
0
0
1
8
3
4
2
6
7
5
0
1

result:

ok 100 lines

Test #10:

score: 0
Accepted
time: 7ms
memory: 43072kb

input:

100 10
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 ...

output:

1
2
3
4
5
6
7
8
9
0
2
6
2
0
0
2
6
2
0
0
3
8
1
8
5
8
3
6
3
0
4
4
2
4
0
4
4
2
4
0
5
0
5
0
5
0
5
0
5
0
6
2
8
4
0
6
2
8
4
0
7
8
3
2
5
2
3
8
7
0
8
4
6
2
0
8
4
6
2
0
9
4
9
4
5
4
9
4
9
0
0
0
0
0
0
0
0
0
0
0

result:

ok 100 lines

Test #11:

score: 0
Accepted
time: 17ms
memory: 43176kb

input:

100 11
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 10
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
7 1
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 9
7 10
8 1
8 ...

output:

1
2
3
4
5
6
7
8
9
10
2
6
1
9
8
9
1
6
2
0
3
7
7
9
8
10
10
3
6
3
4
0
5
5
10
10
8
9
9
6
5
0
4
10
6
7
10
4
2
7
6
10
4
5
3
2
0
7
2
5
7
5
2
8
6
1
6
0
3
6
8
6
6
3
2
4
8
3
6
9
9
8
10
2
8
6
10
9
3
1
10
0
4
3
0
6
0
7
4
9

result:

ok 100 lines

Test #12:

score: 0
Accepted
time: 93ms
memory: 43116kb

input:

10 972033073
576 523187654
758 588616188
30 532959085
476 481773028
573 76725430
520 142462406
865 820120297
687 526533288
913 38106557
67 924529654

output:

259748390
909910217
708973357
300073565
463921261
889897372
587262932
255642402
868975954
14589849

result:

ok 10 lines

Test #13:

score: 0
Accepted
time: 124ms
memory: 43072kb

input:

10 922366485
846 278501607
683 609355362
44 978777279
545 730718412
926 323835432
883 761846029
623 408215612
989 588832935
449 743830620
259 183431187

output:

461786112
672633342
164805246
547995105
9661617
154501063
370848893
402005970
886523490
435107511

result:

ok 10 lines

Test #14:

score: 0
Accepted
time: 114ms
memory: 43204kb

input:

10 13890975
949 837425969
667 981449995
991 564074312
501 604745038
593 640307170
128 408163542
80 976891742
930 710947599
852 333118419
250 333252788

output:

3898759
9290500
7087084
4913904
196250
1746549
9627740
8673120
10274253
10549775

result:

ok 10 lines

Test #15:

score: 0
Accepted
time: 61ms
memory: 43196kb

input:

10 105576445
649 937885257
141 713063090
253 716966251
845 330657011
347 664392407
810 50478969
389 530582574
228 199722046
85 256258366
605 3721959

output:

22721419
27962190
85541228
53950260
35288938
100176945
86409840
102331663
55591445
14790745

result:

ok 10 lines

Test #16:

score: 0
Accepted
time: 83ms
memory: 43140kb

input:

10 445185474
268 687201814
929 296077349
690 202741564
372 661889855
442 989604795
367 456833096
702 862601129
795 37538865
556 131444040
108 645857776

output:

39577672
390323147
423333756
49417686
12978114
278291170
60346062
410583855
68429394
296833176

result:

ok 10 lines

Test #17:

score: 0
Accepted
time: 111ms
memory: 43068kb

input:

10 265384486
870 503808438
959 733458117
126 226376632
979 205878607
747 270352323
339 384431347
373 659485098
597 832514575
832 906898547
12 869891031

output:

54820154
83262107
48675762
32938269
169458409
153632065
105152812
48645927
29870948
83831862

result:

ok 10 lines

Test #18:

score: 0
Accepted
time: 89ms
memory: 43068kb

input:

10 869896294
256 326197921
496 115501273
861 238744067
581 600444623
619 536213251
89 898877607
136 353575223
860 349472278
491 770026371
668 622723560

output:

678111040
344947200
90686837
157367547
295943299
25262829
81930384
532341712
23048077
475131428

result:

ok 10 lines

Test #19:

score: 0
Accepted
time: 131ms
memory: 43068kb

input:

10 692092859
831 647975618
792 737778459
392 768554014
854 612888229
31 148093584
793 559010229
970 237393805
339 914914862
831 979073722
988 738224088

output:

324659472
16793498
421391172
416475848
59704753
347151224
415078841
680610884
397373492
296521551

result:

ok 10 lines

Test #20:

score: 0
Accepted
time: 57ms
memory: 43104kb

input:

10 827165684
577 720722656
383 778750361
951 59165685
502 993162103
589 166261195
500 816688874
40 625075150
331 160531509
394 578798823
181 710984062

output:

736529364
199088527
528654835
586634074
442300715
383600380
707706396
763397655
534310310
338272096

result:

ok 10 lines

Test #21:

score: 0
Accepted
time: 70ms
memory: 43040kb

input:

10 691312083
185 445519030
93 44970277
951 662144708
252 766000017
83 911805458
424 816227326
770 136026896
354 763387805
247 458147285
747 14566368

output:

411209183
132362175
110569626
664410537
241484162
480388660
264805387
294178848
147876955
371900799

result:

ok 10 lines

Test #22:

score: 0
Accepted
time: 226ms
memory: 43052kb

input:

10 691312083
1000 445519030
1000 44970277
1000 662144708
1000 766000017
1000 911805458
1000 816227326
1000 136026896
1000 763387805
1000 458147285
747 14566368

output:

365043118
14826361
571573673
63977538
484010015
499398766
433242788
43269113
412491407
371900799

result:

ok 10 lines

Extra Test:

score: 0
Extra Test Passed