QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#673478#9476. 012 Gridhos_lyricAC ✓68ms15184kbC++1412.1kb2024-10-24 22:42:532024-10-24 22:42:53

Judging History

你现在查看的是最新测评结果

  • [2024-10-24 22:42:53]
  • 评测
  • 测评结果:AC
  • 用时:68ms
  • 内存:15184kb
  • [2024-10-24 22:42:53]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353U;
constexpr unsigned MO2 = 2U * MO;
constexpr int FFT_MAX = 23;
using Mint = ModInt<MO>;
constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U};
constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U};
constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U};
constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U};

// as[rev(i)] <- \sum_j \zeta^(ij) as[j]
void fft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = n;
  if (m >>= 1) {
    for (int i = 0; i < m; ++i) {
      const unsigned x = as[i + m].x;  // < MO
      as[i + m].x = as[i].x + MO - x;  // < 2 MO
      as[i].x += x;  // < 2 MO
    }
  }
  if (m >>= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned x = (prod * as[i + m]).x;  // < MO
        as[i + m].x = as[i].x + MO - x;  // < 3 MO
        as[i].x += x;  // < 3 MO
      }
      prod *= FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  for (; m; ) {
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i + m].x = as[i].x + MO - x;  // < 4 MO
          as[i].x += x;  // < 4 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
          as[i + m].x = as[i].x + MO - x;  // < 3 MO
          as[i].x += x;  // < 3 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
  }
  for (int i = 0; i < n; ++i) {
    as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
    as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x;  // < MO
  }
}

// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
void invFft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = 1;
  if (m < n >> 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
    m <<= 1;
  }
  for (; m < n >> 1; m <<= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + (m >> 1); ++i) {
        const unsigned long long y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
        as[i].x += as[i + m].x;  // < 4 MO
        as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  if (m < n) {
    for (int i = 0; i < m; ++i) {
      const unsigned y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
      as[i].x += as[i + m].x;  // < 4 MO
      as[i + m].x = y;  // < 4 MO
    }
  }
  const Mint invN = Mint(n).inv();
  for (int i = 0; i < n; ++i) {
    as[i] *= invN;
  }
}

void fft(vector<Mint> &as) {
  fft(as.data(), as.size());
}
void invFft(vector<Mint> &as) {
  invFft(as.data(), as.size());
}

vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {
  if (as.empty() || bs.empty()) return {};
  const int len = as.size() + bs.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  bs.resize(n); fft(bs);
  for (int i = 0; i < n; ++i) as[i] *= bs[i];
  invFft(as);
  as.resize(len);
  return as;
}
vector<Mint> square(vector<Mint> as) {
  if (as.empty()) return {};
  const int len = as.size() + as.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  for (int i = 0; i < n; ++i) as[i] *= as[i];
  invFft(as);
  as.resize(len);
  return as;
}
// m := |as|, n := |bs|
// cs[k] = \sum[i-j=k] as[i] bs[j]  (0 <= k <= m-n)
// transpose of ((multiply by bs): K^[0,m-n] -> K^[0,m-1])
vector<Mint> middle(vector<Mint> as, vector<Mint> bs) {
  const int m = as.size(), n = bs.size();
  assert(m >= n); assert(n >= 1);
  int len = 1;
  for (; len < m; len <<= 1) {}
  as.resize(len, 0);
  fft(as);
  std::reverse(bs.begin(), bs.end());
  bs.resize(len, 0);
  fft(bs);
  for (int i = 0; i < len; ++i) as[i] *= bs[i];
  invFft(as);
  as.resize(m);
  as.erase(as.begin(), as.begin() + (n - 1));
  return as;
}
////////////////////////////////////////////////////////////////////////////////


constexpr int LIM_INV = 400'010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];

void prepare() {
  inv[1] = 1;
  for (int i = 2; i < LIM_INV; ++i) {
    inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
  }
  fac[0] = invFac[0] = 1;
  for (int i = 1; i < LIM_INV; ++i) {
    fac[i] = fac[i - 1] * i;
    invFac[i] = invFac[i - 1] * inv[i];
  }
}
Mint binom(Int n, Int k) {
  if (n < 0) {
    if (k >= 0) {
      return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
    } else if (n - k >= 0) {
      return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
    } else {
      return 0;
    }
  } else {
    if (0 <= k && k <= n) {
      assert(n < LIM_INV);
      return fac[n] * invFac[k] * invFac[n - k];
    } else {
      return 0;
    }
  }
}


Mint path(int x, int y) {
  return (x >= 0 && y >= 0) ? (fac[x + y] * invFac[x] * invFac[y]) : 0;
}
Mint calc(int x, int y) {
  return path(x-1, y-1) * path(x-1, y-1) - path(x-2, y) * path(x, y-2);
}

int main() {
  prepare();
  
  int M, N;
  for (; ~scanf("%d%d", &M, &N); ) {
    Mint ans = 0;
    
    /*
      forbidden: two paths meet strictly inside
      ==> the same path, or split on the perimeter
        (OK for M = 1 or N = 1)
    */
    /*
      (M, 0) -> (x, 0) --(split)-> (0, y) -> (0, N)
      det [ path(x-1, y-1) path(x-2, y  ) ]
          [ path(x  , y-2) path(x-1, y-1) ]
    */
    {
      vector<Mint> fs(M + 1, 0), gs(N + 1, 0);
      for (int x = 1; x <= M; ++x) fs[x] = invFac[x - 1] * invFac[x - 1];
      for (int y = 1; y <= N; ++y) gs[y] = invFac[y - 1] * invFac[y - 1];
      auto hs = convolve(fs, gs);
      for (int z = 2; z <= M + N; ++z) ans += hs[z] * fac[z - 2] * fac[z - 2];
    }
    {
      vector<Mint> fs(M + 1, 0), gs(N + 1, 0);
      for (int x = 2; x <= M; ++x) fs[x] = invFac[x - 2] * invFac[x    ];
      for (int y = 2; y <= N; ++y) gs[y] = invFac[y    ] * invFac[y - 2];
      auto hs = convolve(fs, gs);
      for (int z = 2; z <= M + N; ++z) ans -= hs[z] * fac[z - 2] * fac[z - 2];
    }
    ans *= 2;
    ans -= calc(M, N);
    // (M, 0) -> (x, 0) --(split)-> (x', N) > (0, N)
    for (int dx = 1; dx <= M - 2; ++dx) ans += Mint(M - 1 - dx) * calc(dx, N);
    for (int dy = 1; dy <= N - 2; ++dy) ans += Mint(N - 1 - dy) * calc(M, dy);
    // (M, 0) -> (0, 0) -> (0, N)
    ans += 2;
    
    printf("%u\n", ans.x);
  }
  return 0;
}

详细

Test #1:

score: 100
Accepted
time: 5ms
memory: 8456kb

input:

2 2

output:

11

result:

ok "11"

Test #2:

score: 0
Accepted
time: 4ms
memory: 8456kb

input:

20 23

output:

521442928

result:

ok "521442928"

Test #3:

score: 0
Accepted
time: 65ms
memory: 15168kb

input:

200000 200000

output:

411160917

result:

ok "411160917"

Test #4:

score: 0
Accepted
time: 4ms
memory: 8428kb

input:

8 3

output:

2899

result:

ok "2899"

Test #5:

score: 0
Accepted
time: 4ms
memory: 8476kb

input:

10 9

output:

338037463

result:

ok "338037463"

Test #6:

score: 0
Accepted
time: 4ms
memory: 8468kb

input:

3 3

output:

64

result:

ok "64"

Test #7:

score: 0
Accepted
time: 4ms
memory: 8528kb

input:

9 4

output:

39733

result:

ok "39733"

Test #8:

score: 0
Accepted
time: 4ms
memory: 8732kb

input:

36 33

output:

545587245

result:

ok "545587245"

Test #9:

score: 0
Accepted
time: 4ms
memory: 8408kb

input:

35 39

output:

62117944

result:

ok "62117944"

Test #10:

score: 0
Accepted
time: 4ms
memory: 8720kb

input:

48 10

output:

264659761

result:

ok "264659761"

Test #11:

score: 0
Accepted
time: 2ms
memory: 8492kb

input:

46 30

output:

880000821

result:

ok "880000821"

Test #12:

score: 0
Accepted
time: 4ms
memory: 8456kb

input:

25 24

output:

280799864

result:

ok "280799864"

Test #13:

score: 0
Accepted
time: 4ms
memory: 8488kb

input:

17 10

output:

624958192

result:

ok "624958192"

Test #14:

score: 0
Accepted
time: 5ms
memory: 8860kb

input:

4608 9241

output:

322218996

result:

ok "322218996"

Test #15:

score: 0
Accepted
time: 5ms
memory: 8600kb

input:

3665 6137

output:

537704652

result:

ok "537704652"

Test #16:

score: 0
Accepted
time: 6ms
memory: 8532kb

input:

4192 6186

output:

971816887

result:

ok "971816887"

Test #17:

score: 0
Accepted
time: 6ms
memory: 8584kb

input:

4562 4403

output:

867628411

result:

ok "867628411"

Test #18:

score: 0
Accepted
time: 3ms
memory: 8576kb

input:

8726 3237

output:

808804305

result:

ok "808804305"

Test #19:

score: 0
Accepted
time: 6ms
memory: 8584kb

input:

5257 8166

output:

488829288

result:

ok "488829288"

Test #20:

score: 0
Accepted
time: 3ms
memory: 8564kb

input:

8013 7958

output:

215666893

result:

ok "215666893"

Test #21:

score: 0
Accepted
time: 6ms
memory: 8592kb

input:

8837 5868

output:

239261227

result:

ok "239261227"

Test #22:

score: 0
Accepted
time: 6ms
memory: 8648kb

input:

8917 5492

output:

706653412

result:

ok "706653412"

Test #23:

score: 0
Accepted
time: 3ms
memory: 8528kb

input:

9628 5378

output:

753685501

result:

ok "753685501"

Test #24:

score: 0
Accepted
time: 54ms
memory: 14744kb

input:

163762 183794

output:

141157510

result:

ok "141157510"

Test #25:

score: 0
Accepted
time: 33ms
memory: 11172kb

input:

83512 82743

output:

114622013

result:

ok "114622013"

Test #26:

score: 0
Accepted
time: 30ms
memory: 10916kb

input:

84692 56473

output:

263907717

result:

ok "263907717"

Test #27:

score: 0
Accepted
time: 19ms
memory: 9700kb

input:

31827 74195

output:

200356808

result:

ok "200356808"

Test #28:

score: 0
Accepted
time: 55ms
memory: 14616kb

input:

189921 163932

output:

845151158

result:

ok "845151158"

Test #29:

score: 0
Accepted
time: 25ms
memory: 11648kb

input:

27157 177990

output:

847356039

result:

ok "847356039"

Test #30:

score: 0
Accepted
time: 27ms
memory: 11112kb

input:

136835 39390

output:

962822638

result:

ok "962822638"

Test #31:

score: 0
Accepted
time: 29ms
memory: 11180kb

input:

118610 18795

output:

243423874

result:

ok "243423874"

Test #32:

score: 0
Accepted
time: 33ms
memory: 11068kb

input:

122070 19995

output:

531055604

result:

ok "531055604"

Test #33:

score: 0
Accepted
time: 31ms
memory: 11596kb

input:

20031 195670

output:

483162363

result:

ok "483162363"

Test #34:

score: 0
Accepted
time: 64ms
memory: 15168kb

input:

199992 199992

output:

262099623

result:

ok "262099623"

Test #35:

score: 0
Accepted
time: 66ms
memory: 15184kb

input:

200000 199992

output:

477266520

result:

ok "477266520"

Test #36:

score: 0
Accepted
time: 68ms
memory: 15112kb

input:

199999 199996

output:

165483205

result:

ok "165483205"

Test #37:

score: 0
Accepted
time: 5ms
memory: 8456kb

input:

1 1

output:

3

result:

ok "3"

Test #38:

score: 0
Accepted
time: 19ms
memory: 9700kb

input:

1 100000

output:

8828237

result:

ok "8828237"

Test #39:

score: 0
Accepted
time: 20ms
memory: 9612kb

input:

100000 2

output:

263711286

result:

ok "263711286"

Test #40:

score: 0
Accepted
time: 4ms
memory: 8464kb

input:

50 50

output:

634767411

result:

ok "634767411"

Extra Test:

score: 0
Extra Test Passed