QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#673272 | #7511. Planar Graph | Nanani | AC ✓ | 1ms | 3912kb | C++17 | 20.9kb | 2024-10-24 21:30:01 | 2024-10-24 21:30:02 |
Judging History
answer
//by 72
#include <bits/stdc++.h>
#define F(i, a, b) for(int i = a; i <= b; i ++)
#define Fd(i, a, b) for(int i = a; i >= b; i --)
#define pb push_back
#define pii pair<int, int>
#define fi first
#define se second
#define mp make_pair
#define int long long
const int mod = 998244353;
typedef long long ll;
typedef ll T;
// long long 类型可以把 fabs -> abs
typedef double db;
using namespace std;
const db pi = acosl(-1);
const db eps = 1e-8;
int sgn(T x) {
if (fabs(x) < eps) return 0;
else return x < 0 ? -1 : 1;
}
int dcmp(T x, T y) {
if (fabs(x - y) < eps) return 0;
else return x < y ? -1 : 1;
}
struct point {
T x, y;
point() {}
point(T x, T y): x(x), y(y) {}
point operator + (point B) const {return point(x + B.x, y + B.y);}
point operator - (point B) const {return point(x - B.x, y - B.y);}
point operator * (T k) const {return point(x * k, y * k);}
point operator / (T k) const {return point(x / k, y / k);}
bool operator == (point B) const {return sgn(x - B.x) == 0 && sgn(y - B.y) == 0;}
bool operator < (point B) const {return sgn(x - B.x) < 0 || (sgn(x - B.x) == 0 && sgn(y - B.y) < 0);}
T cross(point p) const {return x * p.y - y * p.x;} // 向量叉积
int left(point p) const {return sgn(cross(p));} // 0共线 1 p在左边 -1 p在右边
};
db dis(point A, point B) {return sqrtl((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));}
typedef point vct;
T dot(vct A, vct B) {return A.x * B.x + A.y * B.y;}
db len(vct A) {return sqrtl(dot(A, A));}
T len2(vct A) {return dot(A, A);}
db angle(vct A, vct B) {
db tmp = dot(A, B) / len(A) / len(B);
if(tmp > 1) tmp = 1;
else if(tmp < -1) tmp = -1;
return acosl(tmp);
// return atan2l(cross(A, B), dot(A, B));
} // 求向量a和b的夹角
T cross(vct A, vct B) {return A.x * B.y - A.y * B.x;}
T area2(point A, point B, point C) {return fabs(cross(B - A, C - A));} //平行四边形面积
vct rotate(vct A, db rad) {return vct(A.x * cosl(rad) - A.y * sinl(rad), A.x * sinl(rad) + A.y * cosl(rad));} //逆时针旋转
point rotate2(point a, point b, db rad) {point tmp = rotate(a - b, rad); return tmp + b;} // a绕着b逆时针转rad
vct normal(vct A) {return vct(-A.y / len(A), A.x / len(A));} //单位法向量
bool parallel(vct A, vct B) {return sgn(cross(A, B)) == 0;}
bool cmp2(point a, point b) { // 极角排序 逆时针
// 1e9 + long double 可以过
// 建议先用 atan2 / atan2l 对每一个点求出极角实际大小 再比较 作为cmp很慢
if(sgn(atan2l(a.y, a.x) - atan2l(b.y, b.x)) == 0) return a.x < a.y;
return atan2l(a.y, a.x) < atan2l(b.y, b.x);
}
// 极角排序
int get_region(point p) {return sgn(p.y) < 0 ? -1 : sgn(p.y) > 0 | (sgn(p.y) == 0 & sgn(p.x) < 0);}
// -1 下半平面 (不包括x轴) 1 上半平面/x轴负半轴 0 原点/x轴正半轴
T dot(point x){ return x.x * x.x + x.y * x.y; }
bool cmp_arg(point a, point b) {
// 下半平面 < 原点(极角认为是 0) < 正半轴 < 上半平面 < 负半轴
int p = get_region(a), q = get_region(b);
if(p != q) return p < q;
if(a.left(b) == 0) return dot(a) < dot(b); // 共线判线段长度
return a.left(b) == 1; // 同一区域叉积判断 否则判区间
}
bool cmpy(point A, point B) {return sgn(A.y - B.y) < 0;}
struct cmp_y {bool operator()(const point &a, const point &b) const {return sgn(a.y - b.y) < 0;}};
struct line {
point p1, p2;
line() {}
line(point p1, point p2): p1(p1), p2(p2) {}
line(point p, db rad) {
p1 = p;
if (sgn(rad - pi / 2) == 0) p2 = (p1 + point(0, 1));
else p2 = p1 + (point(1, tan(rad)));
}
line(T a, T b, T c) {
if (sgn(a) == 0) p1 = point(0, -c / b), p2 = point(1, -c / b);
else if (sgn(b) == 0) p1 = point(-c / a, 0), p2 = point(-c / a, 1);
else p1 = point(0, -c / b), p2 = point(1, (-c - a) / b);
}
line(T k, T b) {*this = line(k, -1, b);}
bool operator < (line a) {
if(p1.x == p2.x || a.p1.x == a.p2.x) return p1.x != p2.x;
return (db)(p2.y - p1.y) / (p2.x - p1.x) < (db)(a.p2.y - a.p1.y) / (a.p2.x - a.p1.x);
}
db get_rad() {
db rad = atan2l(p2.y - p1.y, p2.x - p1.x); // 得到的角度范围是 (-π, π)
if (rad < 0) rad += 2 * pi; // 如果角度为负,加上 2π 使其变为正值
return rad;
}
};
typedef line segment;
int point_line_relation(point p, line v) {return sgn(cross(v.p2 - v.p1, p - v.p1));} //1在左侧 -1在右侧
// 判断点是否在直线上 可能有精度误差
bool point_on_seg(point p, line v) {return sgn(cross(p - v.p1, v.p2 - v.p1)) == 0 && sgn(dot(p - v.p1, p - v.p2)) <= 0;}
db dis_point_line(point p, line v) {return fabs((db)cross(p - v.p1, v.p2 - v.p1)) / dis(v.p1, v.p2);}
point point_line_proj(point p, line v) {return v.p1 + (v.p2 - v.p1) * (dot(v.p2 - v.p1, p - v.p1) / len2(v.p2 - v.p1));} //投影
point point_line_symmetry(point p, line v) {point q = point_line_proj(p, v); return point(2 * q.x - p.x, 2 * q.y - p.y);} //对称点
db dis_point_seg(point p, segment v) {
if (sgn(dot(p - v.p1, v.p2 - v.p1)) < 0 || sgn(dot(p - v.p2, v.p1 - v.p2)) < 0) return min(dis(p, v.p1), dis(p, v.p2));
return dis_point_line(p, v);
}
int line_relation(line v1, line v2) {
if (sgn(cross(v1.p2 - v1.p1, v2.p2 - v2.p1)) == 0) {
if (point_line_relation(v1.p1, v2) == 0) return -1;//重合
return 0;//平行
}
return 1;//相交
}
point cross_point(line l1, line l2) { //得保证两直线不平行
auto [x1, y1] = l1;
auto [x2, y2] = l2;
point v1 = y1 - x1, v2 = y2 - x2;
point u = x1 - x2;
db t = (db)cross(v2, u) / cross(v1, v2);
return x1 + v1 * t;
}
bool cross_segment(segment l1, segment l2) {
point a = l1.p1, b = l1.p2, c = l2.p1, d = l2.p2;
T c1 = cross(b - a, c - a), c2 = cross(b - a, d - a), d1 = cross(d - c, a - c), d2 = cross(d - c, b - c);
return sgn(c1) * sgn(c2) < 0 && sgn(d1) * sgn(d2) < 0;
}
T polygon_area(vector<point> &p) { //多边形用点集来表示
int n = p.size();
T area = 0;
F(i, 0, n - 1) area += cross(p[i], p[(i + 1) % n]);
return area;
}
point polygon_center(vector<point> &p) {
int n = p.size();
point ans(0, 0);
if (polygon_area(p) == 0) return ans;
F(i, 1, n - 1) ans = ans + (p[i] + p[(i + 1) % n]) * cross(p[i], p[(i + 1) % n]);
return ans / polygon_area(p) / 6;
}
// 内部1 外部0 边界上-1
int point_in_polygon(point p, vector<point> &poly){
// O(n) 算法
int wn = 0, n = poly.size();
// wn表示回转数 回转数为0在多边形外部
// 用光线投射法算回转数 从左边穿过向量+1 从右边穿过向量-1
F(i, 0, n - 1) {
if(point_on_seg(p, line(poly[i], poly[(i + 1) % n]))) return -1;
int k = sgn(cross(poly[(i + 1) % n] - poly[i], p - poly[i]));
int d1 = sgn(poly[i].y - p.y);
int d2 = sgn(poly[(i + 1) % n].y - p.y);
if(k > 0 && d1 <= 0 && d2 > 0) wn ++;
if(k < 0 && d2 <= 0 && d1 > 0) wn --;
}
if(wn) return 1;
return 0;
}
// 内部1 外部0 边界上-1
int point_in_polygon2(point a, vector<point> &p) {
// O(logn) 凸包本身是按照以一个点为原点极角序排号的 二分后判断是否在对应线段的左侧
int n = p.size();
if(n == 1) return a == p[0] ? -1 : 0;
if(n == 2) point_on_seg(a, line(p[0], p[1])) ? -1 : 0;
if(a == p[0]) return -1;
if((p[1] - p[0]).left(a - p[0]) == -1 || (p[n - 1] - p[0]).left(a - p[0]) == 1) return 0; // 判极角序比最小的小或比最大的大
// 返回第一个cmp为false的 即第一个不在 a - p[0] 右边的点
auto cmp = [&](const point &u, const point &v) -> bool {return (u - p[0]).left(v - p[0]) == 1;};
int i = lower_bound(p.begin() + 1, p.end(), a, cmp) - p.begin();
if(i == 1) return point_on_seg(a, line(p[0], p[1])) ? -1 : 0;
if(i == n - 1 && point_on_seg(a, line(p[0], p[i]))) return -1;
int tmp = (p[i] - p[i - 1]).left(a - p[i - 1]);
return tmp == 0 ? -1 : tmp == 1;
}
// 凸多边形关于某一方向的极点,复杂度 O(logn)
int extreme(const function<vct(const point&)> &dir, const vector<point>& p) {
auto check = [&](int i) {return dir(p[i]).left(p[(i+1) % p.size()] - p[i]) >= 0;};
auto dir0 = dir(p[0]);
bool check0 = check(0);
if (!check0 && check(p.size() - 1)) return 0;
auto cmp = [&](const point &v) {
int vi = &v - &p[0];
if (vi == 0) return 1;
bool checkv = check(vi);
T t = dir0.left(v - p[0]);
if (vi == 1 && checkv == check0 && t == 0) return 1;
return checkv ^ (checkv == check0 && t <= 0);
};
return partition_point(p.begin(), p.end(), cmp) - p.begin();
}
// 过凸多边形外一点求凸多边形的切线,返回切点下标,复杂度 O(logn)
// 调用之前 check 是否该点是多边形外的点
// 原理是 标记 a 到 p_i 的直线和 p_{i + 1} 的位置关系,左边标记为L,右边标记为R。切点是两个L和R的分界线。
pair<int, int> tangent(const point &a, const vector<point>& p) {
// 凸包在line(p[i], a)左侧 在line(p[j], a)右侧 即顺序是p[i] -> p[j]
int i = extreme([&](const point &u) { return u - a; }, p);
int j = extreme([&](const point &u) { return a - u; }, p);
return {i, j};
}
// 求平行于给定直线的凸多边形的切线,返回切点下标,复杂度 O(logn)
pair<int, int> tangent(const line &a, const vector<point>& p) {
int i = extreme([&](...) { return a.p2 - a.p1; }, p);
int j = extreme([&](...) { return a.p1 - a.p2; }, p);
return {i, j};
}
// 闵可夫斯基和
vector<point> minkowski_sum(const vector<point> &p, const vector<point> &q) {
// 定义边为line
vector<line> e1(p.size()), e2(q.size()), edge(p.size() + q.size());
vector<point> res;
res.reserve(p.size() + q.size());
auto cmp = [](const line &u, const line &v) {return cmp_arg(u.p2 - u.p1, v.p2 - v.p1);};
for (int i = 0; i < p.size(); i++) e1[i] = line(p[i], p[(i + 1) % p.size()]);
for (int i = 0; i < q.size(); i++) e2[i] = line(q[i], q[(i + 1) % q.size()]);
rotate(e1.begin(), min_element(e1.begin(), e1.end(), cmp), e1.end());
rotate(e2.begin(), min_element(e2.begin(), e2.end(), cmp), e2.end());
merge(e1.begin(), e1.end(), e2.begin(), e2.end(), edge.begin(), cmp);
auto check = [&](const vector<point> &res, const point &u) {
const auto &back1 = res.back(), &back2 = *prev(res.end(), 2);
return (back1 - back2).left(u - back1) == 0 && dot(back1 - back2, u - back1) >= -eps;
};
auto u = e1[0].p1 + e2[0].p1;
// 执行闵可夫斯基和的构造
for (const auto &v : edge) {
while (res.size() > 1 && check(res, u)) res.pop_back();
res.push_back(u);
u = u + (v.p2 - v.p1);
}
if (res.size() > 1 && check(res, res[0])) res.pop_back();
return res;
}
// 动态凸包 支持插入 查询是否在凸包内
struct cmp_Arg {bool operator() (const point &a, const point &b) const {return cmp_arg(a, b);}};
struct dynamic_convex {
set<point, cmp_Arg> p; //坐标扩大三倍,便于整数运算
point o; //凸包内一点
db sum = 0;
inline auto nxt(decltype(p.begin()) it) const {it++; return it == p.end() ? p.begin() : it; }
inline auto pre(decltype(p.begin()) it) const {if (it == p.begin()) it = p.end(); return --it; }
bool is_in(const point &a) const {
if(p.size() <= 1) return false;
auto it = p.lower_bound(a * 3 - o);
if (it == p.end()) it = p.begin();
return sgn(cross((*it - *pre(it)), ((a * 3 - o) - *pre(it)))) >= 0;
}
db func(point a, point b) {
// 动态维护凸包的信息 这里是周长
return dis(a, b);
}
void add(const point &a) {
if (p.empty()) {
p.insert(a);
return;
}
sum -= func(*p.rbegin(), *p.begin());
auto it = p.lower_bound(a);
if (it != p.begin() && it != p.end()) {
sum -= func(*prev(it), *it);
sum += func(a, *it);
sum += func(a, *prev(it));
} else if (it != p.begin()) {
--it;
sum += func(*it, a);
} else if (it != p.end()) sum += func(*it, a);
p.insert(a);
sum += func(*p.begin(), *p.rbegin());
}
void del(const point &a) {
sum -= func(*p.begin(), *p.rbegin());
auto x = *p.rbegin();
auto it = p.find(a);
x = *it;
if (it != p.begin() && it != p.end() && next(it) != p.end()) {
sum -= func(*it, *prev(it));
sum -= func(*it, *next(it));
sum += func(*prev(it), *next(it));
} else if (it != p.begin()) sum -= func(*it, *prev(it));
else if (it != p.end() && next(it) != p.end()) sum -= func(*it, *next(it));
p.erase(it);
sum += func(*p.begin(), *p.rbegin());
}
void insert(point a) {
if (p.size() <= 1) {
add(a * 3);
return;
}
if (p.size() == 2) {
point u = *p.begin(), v = *p.rbegin();
o = (u + v + a * 3) / 3;
p.clear(), sum = 0; // 这里要清零
add(u - o), add(v - o), add(a * 3 - o);
return;
}
if (is_in(a)) return;
a = a * 3 - o, add(a);
auto _it = p.insert(a).first;
auto it = nxt(_it);
while (p.size() > 3 && sgn(cross((*it - a), (*nxt(it) - *it))) <= 0) del(*it), it = nxt(_it);
it = pre(_it);
while (p.size() > 3 && sgn(cross((*it - *pre(it)), (a - *it))) <= 0) del(*it), it = pre(_it);
}
db cal() {return sum / 3.0;}
};
// 平面最近点对
T closest_pair(vector<point> &p) {
int n = p.size();
multiset<point, cmp_y> s;
sort(p.begin(), p.end());
db res = 1e18;
for(int i = 0, j = 0; i < n; i ++) {
while(j < i && dcmp(p[i].x - p[j].x, res) >= 0) s.erase(s.find(p[j ++]));
for (auto it = s.lower_bound(point(p[i].x, p[i].y - res)); it != s.end() && (*it).y < p[i].y + res; it ++) {
res = min(res, dis(*it, p[i]));
} s.insert(p[i]);
}
return res;
}
vector<point> convex_hull(vector<point> &p) {
vector<point> ch;
sort(p.begin(), p.end());
p.erase(unique(p.begin(), p.end()), p.end());
int n = p.size();
int v = 0;
F(i, 0, n - 1) {
while(v >= 2 && sgn(cross(ch[v - 1] - ch[v - 2], p[i] - ch[v - 1])) <= 0) v --, ch.pop_back();
v ++, ch.push_back(p[i]);
} int j = v;
Fd(i, n - 2, 0) {
while(v > j && sgn(cross(ch[v - 1] - ch[v - 2], p[i] - ch[v - 1])) <= 0) v --, ch.pop_back();
v ++, ch.push_back(p[i]);
}
if(n > 1) ch.pop_back();
return ch;
}
T rotating_calipers(vector<point> &ch) { //旋转卡壳求凸包直径
// 点到极边具有单调性
int n = ch.size();
if(n == 2) return dis(ch[0], ch[1]);
// if(n == 2) return len2(ch[0] - ch[1]); // 求距离的平方
db res = 0; int j = 0;
F(i, 0, n - 1) {
point u = ch[i], v = ch[(i + 1) % n];
while(sgn(cross(u - ch[j], v - ch[j]) - cross(u - ch[(j + 1) % n], v - ch[(j + 1) % n])) <= 0)
j = (j + 1) % n;
// 有向面积 一定为正
res = max({res, dis(ch[j], ch[i]), dis(ch[j], ch[(i + 1) % n])});
// res = max({res, len2(ch[j] - ch[i]), len2(ch[j] - ch[(i + 1) % n])});
}
return res;
}
struct circle{
point c;
T r;
circle() {}
circle(point c, T r) : c(c), r(r) {}
circle(T x, T y, T _r) {c = point(x, y); r = _r;}
point get_point(T a){//通过圆心角求坐标
return point(c.x + cosl(a)*r, c.y + sinl(a)*r);
}
};
int point_circle_relation(point p, circle C) {
db dst = dis(p, C.c);
if(sgn(dst - C.r) < 0) return 0;
if(sgn(dst - C.r) == 0) return 1;
return 2; // 外部
}
int line_circle_relation(line v, circle C) {
db dst = dis_point_line(C.c, v);
if(sgn(dst - C.r) < 0) return 0;
if(sgn(dst - C.r) == 0) return 1;
return 2;
}
int seg_circle_relation(segment v, circle C) {
db dst = dis_point_seg(C.c, v);
if(sgn(dst - C.r) < 0) return 0;
if(sgn(dst - C.r) == 0) return 1;
return 2;
}
int line_cross_circle(line v, circle C, point &pa, point &pb) {
// 圆和直线相交的两个点 返回值是交点个数
if(line_circle_relation(v, C) == 2) return 0;
point q = point_line_proj(C.c, v);
db d = dis_point_line(C.c, v);
db k = sqrt(C.r * C.r - d * d);
if(sgn(k) == 0) {pa = q, pb = q; return 1;}
point nn = (v.p2 - v.p1) / len(v.p2 - v.p1);
pa = q + nn * k, pb = q - nn * k;
return 2;
}
db circle_overlap_area(point c1, db r1, point c2, db r2){
// 两个圆的覆盖面积
db d = len(c1 - c2);
if(r1 + r2 < d + eps) return 0.0;
if(d < fabs(r1 - r2) + eps){
db r = min(r1, r2);
return pi * r * r;
}
db x = (d * d + r1 * r1 - r2 * r2) / (2.0 * d);
db p = (r1 + r2 + d) / 2.0;
db t1 = acosl(x / r1);
db t2 = acosl((d - x) / r2);
db s1 = r1 * r1 * t1;
db s2 = r2 * r2 * t2;
db s3 = 2 * sqrt(p * (p - r1) * (p - r2) * (p - d));
return s1 + s2 - s3;
}
point circle_center(point a, point b, point c) {
// 三点确定的圆中心
db a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1 * a1 + b1 * b1) / 2;
db a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2 * a2 + b2 * b2) / 2;
db d = a1 * b2 - a2 * b1;
return point(a.x + (c1 * b2 - c2 * b1) / d, a.y + (a1 * c2 - a2 * c1) / d);
}
// 最小圆覆盖
void min_cover_circle(vector<point> &p, point &c, T &r) {
int n = p.size();
random_shuffle(p.begin(), p.end());
c = p[0], r = 0;
F(i, 1, n - 1) if(point_circle_relation(p[i], circle(c, r)) == 2) {
c = p[i], r = 0;
F(j, 0, i - 1) if(sgn(dis(p[j], c) - r) > 0) {
c = (p[i] + p[j]) / 2;
r = dis(p[j], c);
F(k, 0, j - 1) if(sgn(dis(p[k], c) - r) > 0) {
c = circle_center(p[i], p[j], p[k]);
r = dis(p[i], c);
}
}
}
}
const int N = 1005;
vector<point> a, b;
vector<int> ed[N];
pii E[N << 1];
int now = 0, vst[N << 1];
bool cmp(int x, int y) {return cmp_arg(a[x] - a[now], a[y] - a[now]);}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m, c; cin >> n >> m >> c;
map<pii, int> rk;
F(i, 0, n - 1) {
int x, y; cin >> x >> y;
a.push_back(point(x, y));
}
F(i, 0, m - 1) {
int x, y; cin >> x >> y;
b.push_back(point(x, y));
}
F(i, 0, c - 1){
int u, v; cin >> u >> v;
u --, v --;
ed[u].push_back(v), ed[v].push_back(u);
E[2 * i] = {u, v}, E[2 * i + 1] = {v, u};
rk[{u, v}] = 2 * i, rk[{v, u}] = 2 * i + 1;
}
F(i, 0, n - 1) {
now = i;
sort(ed[i].begin(), ed[i].end(), cmp);
}
vector<vector<point>> polygon;
vector<vector<int>> Polygon;
vector<int> area;
F(i, 0, 2 * c - 1) if(! vst[i]) {
int tmp = i;
vector<point> p;
vector<int> q;
// p.push_back(a[E[tmp].fi]);
// q.push_back(E[tmp].fi);
while(! vst[tmp]) {
vst[tmp] = 1;
auto [u, v] = E[tmp];
p.push_back(a[v]);
q.push_back(v);
int f = -1;
for(int j = 0; j < ed[v].size(); j ++) if(ed[v][j] == u) {
f = j; break;
}
assert(f != -1);
int nxt = ed[v][(f + ed[v].size() - 1) % ed[v].size()];
tmp = rk[{v, nxt}];
}
ll sum = polygon_area(p);
polygon.push_back(p), area.push_back(sum), Polygon.push_back(q);
}
// for(auto qaq : Polygon) {
// cout << ":\n";
// for(auto x : qaq) cout << x + 1 << " ";
// cout << "\n";
// }
auto get_area = [&](point p) -> int {
int qsy = -1;
for(int i = 0; i < polygon.size(); i ++) if(area[i] > 0 && (qsy == -1 || area[i] < area[qsy])) {
if(point_in_polygon(p, polygon[i]) == 1) qsy = i;
} // 最近的一层包含这个点的是哪个 qaq表示是否额外存在一个多边形使得该点在多边形边界上
return qsy;
};
vector<int> res(c);
auto nanani = [&](int id) -> void {
if(id == -1) return;
int sz = Polygon[id].size();
for(int i = 0; i < sz; i ++) {
int u = Polygon[id][i], v = Polygon[id][(i + 1) % sz];
res[rk[{u, v}] / 2] = 1;
}
};
int P = area.size();
vector<int> flag(P);
F(i, 0, P - 1) if(area[i] <= 0) {
flag[i] = get_area(polygon[i][0]);
}
for(auto o : b) {
int f = get_area(o);
nanani(f);
for(int i = 0; i < P; i ++) if(area[i] <= 0 && flag[i] == f) nanani(i);
}
for(auto x : res) cout << x; cout << "\n";
return 0;
}
//sldl
/*
4 1 4
7 1
8 10
4 4
2 4
2 6
1 3
1 4
2 4
1 2
*/
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3672kb
input:
4 1 3 -2 0 0 2 2 0 0 1 0 3 1 2 2 3 1 3
output:
111
result:
ok single line: '111'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3632kb
input:
13 35 13 13 12 16 -3 18 4 4 -7 23 -22 9 -23 23 11 12 -1 19 -5 15 -15 5 -15 -17 11 -17 -13 -20 19 11 -12 -10 14 -3 14 7 -4 -10 -23 -19 -12 -13 1 -22 10 -21 -1 18 -9 -8 1 13 22 12 -23 -9 -9 -12 -20 4 -3 -6 17 14 -10 10 13 -5 -2 -4 -12 13 22 -18 -21 19 5 12 -18 4 0 3 -17 5 -2 -2 0 8 0 -8 1 14 -18 3 -9 ...
output:
1111111111111
result:
ok single line: '1111111111111'
Test #3:
score: 0
Accepted
time: 1ms
memory: 3660kb
input:
68 59 168 51 -57 -26 -51 -31 58 -45 -78 -46 -49 -53 14 76 -69 -64 32 58 -49 -1 12 -65 28 -15 -10 29 -53 25 -32 78 -41 24 -37 69 56 54 -10 3 36 -18 46 53 -30 41 -2 -30 13 -58 -37 -20 42 -48 -38 -42 22 64 0 9 -56 7 -11 -66 -23 19 -9 -26 -6 -61 -68 57 13 -13 50 -15 -11 -77 47 -77 57 78 51 -37 56 -75 24...
output:
011111111111111111100001011000001001110111110111101011011001111110011011101111110111011101001000000001010100111111100110000100110100101101111111110011001111111100100011
result:
ok single line: '011111111111111111100001011000...1111111110011001111111100100011'
Test #4:
score: 0
Accepted
time: 0ms
memory: 3676kb
input:
59 1 158 -51 8 50 48 -56 -67 19 7 33 -47 32 44 42 47 -36 -57 15 34 -8 23 -24 43 20 11 61 -41 58 -11 -68 -45 36 -54 -21 42 -28 -49 -28 -31 -34 20 29 -65 -13 38 -22 -36 -30 11 -40 57 64 -69 65 51 47 34 -41 31 -1 35 28 -11 58 58 13 12 -52 43 40 6 46 48 46 -59 -52 30 69 -23 -34 38 -1 -5 -12 -27 -11 24 -...
output:
00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000001000000000000000000000000000000000000000000000000001000000000000000
result:
ok single line: '000000000000000000000000000000...0000000000000001000000000000000'
Test #5:
score: 0
Accepted
time: 0ms
memory: 3912kb
input:
92 1 125 55 10 67 -85 -26 80 36 -32 44 -64 41 -50 -93 -80 -66 -92 -68 27 -79 9 87 -61 -40 -64 89 100 75 -42 59 40 60 -30 -66 27 63 90 -19 100 24 -20 -13 83 -100 -92 -83 58 -33 -70 74 -20 -55 73 -41 28 27 -31 -37 -22 40 18 -3 -2 70 79 71 29 32 -73 39 -1 17 -95 -61 56 94 -10 -79 -66 -84 87 -16 71 52 4...
output:
10010010000101001010010100101100100000001010001000000001101111101000011111000000001011000100000010100000000100011011000000110
result:
ok single line: '100100100001010010100101001011...0010100000000100011011000000110'
Test #6:
score: 0
Accepted
time: 1ms
memory: 3672kb
input:
85 47 204 48 93 -32 10 71 70 -37 10 20 -12 -32 -56 1 -22 -46 -64 56 82 -19 63 -5 83 16 89 79 81 51 -22 43 59 33 -87 28 67 -18 38 -16 -23 18 -78 87 66 -83 29 36 58 6 -2 68 80 18 -34 -17 59 -31 -12 -37 -75 33 -79 -51 -24 -88 6 -19 62 71 -78 -51 72 -49 -45 21 41 -58 33 46 67 -11 -31 62 46 54 55 37 -14 ...
output:
000110010001001101100010110101100100011110011110110101010100110011111010101110101001001011100000110101000100010011100100100110100001011010001010001010000100011000001101010110011001101111010000011001000011
result:
ok single line: '000110010001001101100010110101...0011001101111010000011001000011'
Test #7:
score: 0
Accepted
time: 1ms
memory: 3724kb
input:
59 96 152 -75886847 147807525 335545968 317138952 262969730 -308175740 91308409 -162085508 -397786268 -191693417 -227565597 195627938 45666011 253210394 -311142459 58197832 -412164189 -270215767 -12639523 -314154358 -269901472 -366179516 -306681757 -167771007 194329800 -339296479 -12501616 -15788817...
output:
01110111111111111110101110111011101111110011100110100111110110001110111101100111100111010111111110110101110111110011111001110001111100010111110111111111
result:
ok single line: '011101111111111111101011101110...1110001111100010111110111111111'
Test #8:
score: 0
Accepted
time: 0ms
memory: 3840kb
input:
62 1 99 -72 -45 -58 -44 -39 5 -45 -56 11 -26 -7 56 -29 -56 -70 -26 64 -64 -12 6 4 44 -14 68 -28 29 -68 -52 -21 -10 19 -37 17 -30 26 64 -40 2 -11 -30 64 -45 38 -67 43 -35 67 -49 50 72 -60 -2 -28 37 55 55 -7 42 -63 -32 71 35 -55 26 -67 -49 -42 -43 69 59 -29 5 0 -36 -1 8 -53 66 1 -6 -2 32 -51 -61 -27 6...
output:
000010000000000110001101000110000000010010000001001001100000010010000010001100010011010101001000010
result:
ok single line: '000010000000000110001101000110...0010001100010011010101001000010'
Test #9:
score: 0
Accepted
time: 0ms
memory: 3672kb
input:
63 1 175 50549954 -224104196 -187903718 57327090 -61398050 89271831 72686467 -167765054 4226095 73332567 -80682032 -158732552 -366425325 -180661648 -210787891 -107411752 44235201 233049038 -29484914 -280845598 228925315 -106736012 -169221325 64453690 -127160591 78410226 374001485 -312357450 31528300...
output:
0000000100000000000000000000000000010000000000000000000001000000000000000010000000000000000000000000000000000010000000000000010000000000000001000000000100000101000000000001000
result:
ok single line: '000000010000000000000000000000...0000000100000101000000000001000'
Test #10:
score: 0
Accepted
time: 0ms
memory: 3692kb
input:
82 4 66 182782804 77923360 117828203 139218692 -110620000 89777361 273011388 138341008 294610527 -194481138 294204618 -290402347 194417551 48839146 -161919200 -261350494 -260772975 -239789170 117370125 245536520 -201599590 -82451402 291486591 84106590 296266013 309943147 -220542664 54399074 24021444...
output:
111101011111111111111111010111111101010111100110100011111111011111
result:
ok single line: '111101011111111111111111010111...1010111100110100011111111011111'
Test #11:
score: 0
Accepted
time: 1ms
memory: 3668kb
input:
65 50 147 -581452360 190355182 -642896619 -572084384 -305018177 -539060586 -328404608 -74526018 198824769 -402666976 -604806291 420433161 646918331 -591294299 360443372 -456307852 253325248 -341024549 -656241212 302363402 524405246 -499973260 -531933602 617077471 -185233072 -318131117 -362315669 -49...
output:
011111111110100110100010010101111011110111010001101101001001111101111111011011011001001001101100100111110111001101101010100100110111100110101010100
result:
ok single line: '011111111110100110100010010101...1010100100110111100110101010100'
Test #12:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
71 1 142 26 16 -81 21 53 -64 -46 67 -37 73 46 79 66 -27 46 53 38 -44 16 44 -44 -43 -8 -30 65 12 60 2 -26 -24 7 71 -31 -27 -13 0 -80 80 77 -65 71 2 8 -53 -64 -71 52 -58 30 53 61 -18 56 -34 -80 -13 80 56 -28 -79 -43 -52 -38 77 11 -1 -30 -73 -39 30 -61 69 -41 66 16 -45 40 -51 37 40 -26 34 57 29 -15 -8 ...
output:
1000000100000100000000001001000000000010101000000100000011001000000000000001000000000000000000000000000000000000000010011000000000000000000010
result:
ok single line: '100000010000010000000000100100...0000010011000000000000000000010'
Test #13:
score: 0
Accepted
time: 1ms
memory: 3740kb
input:
88 68 244 452074073 749836590 -422267242 -370342423 -649645359 303851355 285738514 -585228292 674035872 344344527 -564943027 45741258 301794983 564572022 349063999 218051130 668851769 598897930 596201080 -750109936 95583385 363387733 130300372 -350613210 -126422550 -684185703 -117024972 -406661982 -...
output:
1111011101010010110011001011101101100000000010100110001111000010001011100110001100101100000010001011101100010000010110111000010101010100101011011101011010011110000111010000011110110111101110011111001111101000110001000110101101001101111100111101
result:
ok single line: '111101110101001011001100101110...1000110101101001101111100111101'
Test #14:
score: 0
Accepted
time: 0ms
memory: 3828kb
input:
24 47 58 -536382548 -36211682 -617682678 630246425 -680303961 -753887401 -576626558 -547501154 -166237320 -247093489 -780629487 -564369462 745821462 -462233962 -29960131 -120134355 -215230222 568441689 -505349805 471834374 -268168811 -773902784 -436226654 -153342090 -686102938 -414449668 -318346027 ...
output:
1011111110101111101111111011101111100110100110101011111011
result:
ok single line: '1011111110101111101111111011101111100110100110101011111011'
Test #15:
score: 0
Accepted
time: 1ms
memory: 3888kb
input:
76 82 181 -835091273 636197461 -809826661 -915012307 -514114180 762992620 -801978217 -646901746 -937647819 -73101245 632623370 -798225996 -949969476 -45929520 677089833 -491546441 -818746494 -457407341 -23609804 -63980274 927682282 -371416961 -936340868 -741789992 -82906350 -740214368 -884276937 -32...
output:
1011111111110100011011111001011110100011001111111001011100111111111110011100101011101011101011111011001100001001110001101110010010101111000101010100111100011011110001100110110110011
result:
ok single line: '101111111111010001101111100101...1100011011110001100110110110011'
Test #16:
score: 0
Accepted
time: 0ms
memory: 3680kb
input:
95 1 39 1 -2 5 -59 6 23 77 57 87 -81 96 -9 20 45 -41 5 -80 -76 62 -83 -26 93 89 -61 -104 -65 55 4 50 55 61 -39 -26 -18 -90 -98 -14 38 56 -61 -100 105 92 -4 30 -98 -13 -27 -21 27 -49 95 62 20 91 24 -75 -30 68 -4 -86 84 -17 -13 -93 13 -38 -64 40 -82 63 47 -9 28 -95 7 91 -51 -50 -66 54 27 -3 -12 -8 -89...
output:
110111101111111110111011111111111111111
result:
ok single line: '110111101111111110111011111111111111111'
Test #17:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
53 1 95 249310291 444009281 -51319591 -127058272 -521364452 184610945 -21697253 -380031119 -765296404 788815734 480089046 -792178676 285516793 131912022 715950950 -65482217 36211136 -559456984 -46323546 622669323 812068024 -71601366 -6695845 -158750172 23940379 638024824 -792521738 -179875992 -72088...
output:
00000000000010000100000000000100000000000000000000000000000000000000000100000000000000000000000
result:
ok single line: '000000000000100001000000000001...0000000100000000000000000000000'
Test #18:
score: 0
Accepted
time: 0ms
memory: 3756kb
input:
90 87 67 -37 -98 66 -40 17 24 -32 51 -68 56 -47 78 -83 66 -16 -22 41 -12 -31 86 -1 11 42 65 -27 2 -19 -21 -54 78 -14 -77 -74 5 -46 82 -19 63 76 43 -39 -7 62 -49 68 4 -26 72 -91 0 -40 -74 9 -68 92 64 21 88 53 -55 32 -12 100 -26 9 -24 43 -93 -99 19 -76 -3 21 97 -57 -92 -28 26 -10 -95 96 -11 43 -82 22 ...
output:
1111111111111111111111111111110111111111111111111111111111111111111
result:
ok single line: '111111111111111111111111111111...1111111111111111111111111111111'
Test #19:
score: 0
Accepted
time: 0ms
memory: 3824kb
input:
27 42 12 -196639452 -910071469 556979079 -24132720 -907504137 -798429714 217201737 894945050 592735402 -891961813 351726786 -961077191 428253659 -337157490 -814353097 482187973 -746163779 14512669 -639377173 -925754520 -499592664 319782459 -500528351 591167527 -701230268 -495398846 -836405665 445706...
output:
111111111111
result:
ok single line: '111111111111'
Test #20:
score: 0
Accepted
time: 1ms
memory: 3644kb
input:
63 28 102 -65 69 73 -1 0 -30 -69 -66 48 39 3 -37 52 26 13 18 19 -61 -9 54 24 30 -62 58 -64 -64 -6 -3 48 -24 -58 -59 -45 -1 19 -44 64 13 69 -31 38 13 73 -50 -7 -43 4 58 38 56 -21 36 -36 40 -73 17 23 63 -18 63 41 14 47 68 -16 -47 -30 61 -33 43 -45 25 -31 22 -42 2 1 -40 -17 -2 -65 6 21 -58 31 -15 3 -50...
output:
011111100111111110111110011111010010001111111101100111011111111011110101110101011001111111011111111010
result:
ok single line: '011111100111111110111110011111...1110101011001111111011111111010'
Test #21:
score: 0
Accepted
time: 1ms
memory: 3756kb
input:
81 70 214 501181684 467604004 467393962 79858372 -24971604 -76855555 310835183 -451578432 529058882 -371153027 10117013 439009502 -102203223 498873755 104983339 -167287519 -234656041 548196249 -355162848 -403411047 -303715296 -31203991 412378489 -143945211 -38540379 -474967805 -321224760 115499601 -...
output:
0010100000110011101001110011111111000011110110011000110000111111000110011111000001000100111000101111110111101011101110100000001101010100110100011011111111000100110110010100010001101111000101110110010110011010110000
result:
ok single line: '001010000011001110100111001111...1000101110110010110011010110000'
Test #22:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
2 1 0 -381381789 -155480688 476986136 269997025 374524257 360034879
output:
result:
ok 0 lines
Test #23:
score: 0
Accepted
time: 1ms
memory: 3860kb
input:
64 98 165 368476226 -245975441 321964920 84032145 168655443 132633922 191654925 58795031 174065240 -211635910 349833228 30545690 200179574 272085215 100336543 -391757623 172093450 34273303 -393548578 392781830 -335701529 189217228 -23681938 -213109493 -337162597 334472127 -11931889 167942850 9961263...
output:
111111010111111101101110011011111111011001110111111001000111110111111011110011010101111101101111101101101111011111111101100001010011101101100111100111011100111101100
result:
ok single line: '111111010111111101101110011011...1101100111100111011100111101100'
Test #24:
score: 0
Accepted
time: 0ms
memory: 3644kb
input:
48 3 106 -11919288 401311957 -300306784 -473247000 -572232580 -129053552 -253134521 21856503 -435640199 -269285358 28497548 154734438 449368223 254505621 -41113963 -73600818 -445437245 -234603342 -434722859 -577811918 -411116809 140213809 188703595 -442513896 -200064854 -383148625 -278682300 2351034...
output:
0000000000001000000100000010100000110110000000000010010000010000001000000000000010100000100000000000100000
result:
ok single line: '000000000000100000010000001010...0000010100000100000000000100000'
Test #25:
score: 0
Accepted
time: 1ms
memory: 3764kb
input:
32 67 68 -36 -20 2 9 34 -32 -29 -5 -31 25 37 -29 42 -31 11 40 -33 9 8 -5 -16 -11 -18 -8 8 36 2 20 22 6 -32 4 -3 -30 -18 -34 42 40 -40 -40 -19 -12 -33 30 -34 17 -39 -6 26 -29 41 -19 17 -18 -34 -41 37 -7 32 7 -6 -23 -16 29 14 36 -21 32 -21 -28 -30 40 -21 13 -38 3 37 -31 -2 -8 5 5 36 -37 -35 16 38 33 -...
output:
11011111111010110111111111111100101111111111011011011111111111111111
result:
ok single line: '110111111110101101111111111111...1111111011011011111111111111111'
Test #26:
score: 0
Accepted
time: 0ms
memory: 3696kb
input:
40 1 72 -3372678 23575085 -14527803 -22685257 -5770297 10287106 15480880 -9727089 -13598905 -11137818 -23830038 -22435224 -16870142 11247699 22240990 -4980969 19912096 1617242 8897796 -1011804 20884847 -13905376 1075116 -18515777 -24742774 -21603292 -17315892 17920458 3074471 2211097 -19379610 -1295...
output:
000000000001000000000000000000000010001000001000000000000000000000000000
result:
ok single line: '000000000001000000000000000000...0001000000000000000000000000000'
Test #27:
score: 0
Accepted
time: 1ms
memory: 3860kb
input:
100 1 161 -80137690 25887305 -112675497 -60746940 113490133 75503508 61659499 44746640 -14968017 -100091877 -104246751 105396818 84695481 27512974 26707762 30557205 -50252976 43123976 -87452977 -114609404 -90960888 -29046502 56406267 47388462 31699712 -101291314 -68208465 -106761143 -67054841 -66583...
output:
00001000000001000000000000000000100000000000000001000100110000010001000000001000100110100000010000010000001000000101000101000000100001010000001000000001010000100
result:
ok single line: '000010000000010000000000000000...0001010000001000000001010000100'
Test #28:
score: 0
Accepted
time: 0ms
memory: 3688kb
input:
53 1 47 -60 21 -8 13 32 -28 58 -7 -43 5 -18 7 42 23 35 22 -59 16 20 -17 -55 -25 -62 -47 -18 -42 61 14 53 -34 -51 -60 -50 -18 37 58 -26 14 -59 59 -51 24 -43 -46 -47 27 27 -15 -26 26 -7 -50 40 -2 -57 -1 -37 25 27 1 44 16 25 50 47 32 -42 40 -49 9 37 45 -32 31 61 44 14 21 -25 -18 33 47 -33 -11 34 36 -45...
output:
00000100001000000000000000000000000000000000110
result:
ok single line: '00000100001000000000000000000000000000000000110'
Test #29:
score: 0
Accepted
time: 0ms
memory: 3904kb
input:
62 1 97 -288124496 55427633 -106217896 -320441624 412921225 229817207 -275224721 -519311403 325626455 17792730 694140 -370700355 221344845 -292576453 278441135 91382191 -264581148 605253608 288040649 -257804861 565015276 321207185 -376426170 -97185967 -275609526 177082714 165378518 509619762 -289226...
output:
0000011010101001100001000001010001010000000000010010000011100000000110000101010000010001000000100
result:
ok single line: '000001101010100110000100000101...0110000101010000010001000000100'
Test #30:
score: 0
Accepted
time: 1ms
memory: 3640kb
input:
60 40 102 31 60 62 -5 -59 -14 -14 69 30 21 -40 43 18 4 -12 -14 -41 -46 24 -12 23 39 15 -5 -57 -47 34 -26 53 -55 -63 49 -17 -26 60 -35 42 -22 -32 -47 4 31 18 38 -56 -49 70 41 46 34 -8 39 30 -24 -69 -66 -10 -62 28 -38 11 0 12 25 -30 7 52 29 68 -3 -58 -28 3 0 57 -69 -40 62 51 53 -68 -44 58 -25 -36 -49 ...
output:
111111110010111111111100100111001111101111101111110100110010011111111101001101101011100111111111010111
result:
ok single line: '111111110010111111111100100111...1001101101011100111111111010111'
Test #31:
score: 0
Accepted
time: 0ms
memory: 3704kb
input:
38 1 88 -446400801 -432601444 199781326 451912811 -310982031 -352396254 -371451563 446705858 -455182293 -115870523 192342741 -247378438 52021139 -157133935 425618795 81760805 -289321740 73826020 237967642 245405012 139542786 408639766 -383554281 -393726138 -242304554 230654135 180115969 -217593842 -...
output:
0000001000000000000001000000000000000000000000000000000001000000000000000000000000000000
result:
ok single line: '000000100000000000000100000000...1000000000000000000000000000000'
Test #32:
score: 0
Accepted
time: 1ms
memory: 3808kb
input:
76 1 203 -114230262 198639426 -233519874 304535156 71925374 17384831 61187577 -239527087 -1301445 -284823715 -17528795 -87694527 -71891668 -87551507 297990011 72199440 298333978 -166850097 -217459867 241758763 182666664 130453342 -45491109 -127986422 -66978149 -250733511 302411526 -274384662 1224861...
output:
00000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100000000000001000000000000000
result:
ok single line: '000000000000000010000000000000...0100000000000001000000000000000'
Test #33:
score: 0
Accepted
time: 0ms
memory: 3680kb
input:
25 1 15 -3 34 21 -21 26 -8 -35 16 -16 -6 24 17 -29 7 0 27 -16 30 33 30 31 2 -25 25 31 33 -10 -22 -25 5 -32 11 -6 2 -35 -3 4 -18 8 -23 32 -28 26 26 -20 -3 -18 -17 20 19 -7 -34 4 8 20 23 12 13 8 21 6 13 4 16 13 21 8 11 5 18 6 11 2 19 7 8 5 14 7 16 6 25
output:
111111111111111
result:
ok single line: '111111111111111'
Test #34:
score: 0
Accepted
time: 0ms
memory: 3692kb
input:
69 1 60 59116022 108407 94778844 -122980783 41883194 19636800 -187451713 6187507 -20192750 220459924 -20310470 -194332991 60290065 186874427 117664759 -156393226 5968406 70428711 85377868 168601959 -121623776 -10805246 -142624509 79757169 35682197 -40150966 143098357 -84077220 201596816 128462146 -1...
output:
110000000011000000000010000000000010000000000000000000000000
result:
ok single line: '110000000011000000000010000000000010000000000000000000000000'
Test #35:
score: 0
Accepted
time: 0ms
memory: 3704kb
input:
50 80 107 -136821224 438342159 -418706353 9399993 227086984 708880509 -699325397 650928735 -683886486 -542763048 445537952 437994317 -547883573 -612772235 674767503 301331010 711167575 -504002762 -302413612 585767673 -617012243 -579675418 436969684 -389018306 -176369404 -556177193 199740497 -1279731...
output:
11101001110110011111011110101111111101110111111101011111011011001110111110101110111110110110010101111111111
result:
ok single line: '111010011101100111110111101011...1110111110110110010101111111111'
Test #36:
score: 0
Accepted
time: 0ms
memory: 3688kb
input:
27 1 64 -25051747 96640487 11315454 -51389072 95068722 16273286 -22843851 -70513190 -74137758 -9111615 21053920 -107867712 -32614318 103549910 2393150 19168515 -90542955 -54660103 -13312789 63595983 -8635454 74271767 100997992 7975546 42195819 121435672 -33155278 68709317 -6510510 -64937636 55899006...
output:
0000000000001000000000000000010000000100000100001000000000010100
result:
ok single line: '0000000000001000000000000000010000000100000100001000000000010100'
Test #37:
score: 0
Accepted
time: 0ms
memory: 3624kb
input:
23 1 18 -587851478 132420486 -475758602 -400608037 -98931454 -551980136 -340511412 -276505996 -83836150 55454149 -54179724 206559858 -455797934 -154251228 464412902 39052879 301564372 -401006721 -546638191 425633896 -186653938 573749346 134221719 588337034 -70138896 -525202115 -327528605 540665503 2...
output:
011011111111111110
result:
ok single line: '011011111111111110'
Test #38:
score: 0
Accepted
time: 0ms
memory: 3684kb
input:
52 38 52 -172741511 530619780 549977080 474404309 -547915702 438421321 -391365339 34163364 548153306 -519024791 -180235574 347572036 -163100589 273868723 -425058097 56352201 -43670197 -199317783 183157655 -212775074 248267302 322744067 147359299 445994893 -44259658 -345348250 27220688 248380193 4262...
output:
1111111111111111111111111111111111111111111111111111
result:
ok single line: '1111111111111111111111111111111111111111111111111111'
Test #39:
score: 0
Accepted
time: 1ms
memory: 3868kb
input:
84 1 188 76 61 65 15 80 83 -94 -27 92 29 -27 29 -23 -64 -92 53 8 -82 -28 44 -72 1 -65 -60 61 -35 -85 14 -58 80 -71 -63 26 -51 54 -57 4 19 45 0 22 59 -25 -32 -57 -11 20 -76 -31 46 78 -7 23 76 10 -37 1 23 1 6 -88 -16 -43 56 -49 27 73 -48 77 66 58 -27 38 89 25 87 51 44 47 -59 21 -20 -5 -67 23 -89 32 -2...
output:
00000000001000001001000000000010000000000001001000000000010001000000001001000000010000000000000000000000001100000000010010000000000000000000000000000000000000000000000000000000000000100000
result:
ok single line: '000000000010000010010000000000...0000000000000000000000000100000'
Test #40:
score: 0
Accepted
time: 0ms
memory: 3704kb
input:
100 1 151 113561380 110916055 -202042971 210205642 12303413 111952262 28581056 84194411 205637761 181102235 156312466 137951229 118778185 -93636318 -119495509 -134216633 206600413 166496494 196542187 199300725 -224152338 86716607 28676325 -214678702 -73145624 -46988839 -118078074 138104323 -28028396...
output:
0000000100000000000001000000000010000000000000000001000000000000000100000000001000000000000000000000000000000000000000101000000000000000000000000000000
result:
ok single line: '000000010000000000000100000000...1000000000000000000000000000000'
Test #41:
score: 0
Accepted
time: 0ms
memory: 3628kb
input:
12 84 12 -36439905 31935320 -68591283 13528537 -36821752 -10120895 -23268663 -51987362 -17270332 27599642 -14220756 66133940 4217801 -58637875 20311027 52760847 -672927 -20784000 -42946290 64478308 45462745 -2041480 -32664304 -62771948 69287632 -42291606 12112366 24444326 17494701 -24483473 29503643...
output:
111111111111
result:
ok single line: '111111111111'
Test #42:
score: 0
Accepted
time: 0ms
memory: 3624kb
input:
52 14 42 45 18 0 45 -30 21 53 35 -59 2 21 -16 -24 -62 -48 -49 38 -6 46 -18 33 -53 11 -17 -15 61 3 45 -45 -6 49 20 50 -25 48 -57 -39 11 -46 43 24 -20 -33 -43 52 -29 23 -12 48 53 -20 -16 -44 -46 57 -41 16 -19 -52 -37 4 42 10 -48 31 21 -45 -62 -8 -39 21 -11 7 10 25 33 2 49 12 25 16 48 -39 43 -58 -34 -4...
output:
111111111111111111111111111111111111111111
result:
ok single line: '111111111111111111111111111111111111111111'
Test #43:
score: 0
Accepted
time: 0ms
memory: 3608kb
input:
13 1 11 50001509 48881161 -59857365 30669626 54162135 62601120 -12056654 -29581450 20555084 -37862653 -64440885 65834270 41954171 -10072075 -10372539 -12139482 -61460535 -47231591 -14493051 -29020806 -48650146 45492863 18452711 14049436 39478906 -44669995 -59830633 -32027973 6 12 3 13 12 13 5 12 10 ...
output:
11101110111
result:
ok single line: '11101110111'
Test #44:
score: 0
Accepted
time: 0ms
memory: 3648kb
input:
78 1 121 396995327 158214181 415024439 -659811167 448527806 154062383 208165138 -391842000 193474414 -134150962 -323390941 -175627012 -731206356 -703653906 328435642 42666595 448320717 -192428896 -179674960 -193976132 150468115 -152990895 -169233627 -649281727 -329098117 691631973 -733457437 -610681...
output:
0010000000000000000001000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000
result:
ok single line: '001000000000000000000100000000...0000000000000000000000000000000'
Test #45:
score: 0
Accepted
time: 0ms
memory: 3824kb
input:
83 1 51 87 -37 -81 50 92 26 -86 -88 58 47 -57 -37 -81 -32 -38 -55 -78 79 14 50 90 34 24 46 -44 24 57 26 48 -55 -41 -4 84 -38 -5 -66 82 -70 39 92 -47 -71 54 30 -61 -36 59 3 -58 -24 -46 25 36 79 -67 9 -14 67 -67 73 -74 -67 76 -31 -52 90 -9 20 -89 52 64 -27 -13 3 -57 83 -39 41 55 -47 62 5 88 -89 77 -79...
output:
111111010111111111110111011111111111101111110110111
result:
ok single line: '111111010111111111110111011111111111101111110110111'
Test #46:
score: 0
Accepted
time: 0ms
memory: 3640kb
input:
34 51 45 -38 9 -5 -35 -16 -6 -8 28 -28 -42 39 -29 36 -6 -28 -1 39 -17 -16 4 6 -5 -29 38 30 -9 -29 -19 15 14 27 26 6 26 -40 38 30 -29 37 -44 -5 8 -19 11 13 31 -23 28 -42 -15 31 4 -17 43 -3 34 -17 39 25 -39 -40 42 -30 40 -32 -15 -26 -12 -36 -6 35 41 -31 -15 -17 -6 10 24 14 -36 11 37 41 -43 -4 -28 5 -3...
output:
111111111111111111111111111111111001111111011
result:
ok single line: '111111111111111111111111111111111001111111011'
Test #47:
score: 0
Accepted
time: 1ms
memory: 3780kb
input:
99 46 123 -592182435 -645809554 92283434 -714819045 -423525473 -164302428 475848582 -412025661 -536332323 697460306 198041990 258905077 283984406 127967289 -617604502 582772298 -699941320 -230163014 -710474304 -222084831 394078090 -730012818 -477075045 77739018 325949099 -371309760 572486929 -338912...
output:
111111101111110111111110101111110111111110111111111010011110111011110111111110111111011101011100111111111100100000111110111
result:
ok single line: '111111101111110111111110101111...1100111111111100100000111110111'
Test #48:
score: 0
Accepted
time: 1ms
memory: 3712kb
input:
96 54 270 -92 62 -1 24 -54 58 -6 54 -58 66 83 -55 -30 -80 71 54 68 35 -23 -8 0 -38 73 66 49 -56 -71 87 -20 105 -25 -32 106 53 -16 -97 31 -30 -75 28 25 -84 2 13 -31 3 15 22 99 -6 -78 95 32 -57 64 1 24 38 -11 24 38 -20 20 -59 71 28 40 5 -8 70 89 94 54 -60 50 0 -70 29 -40 99 -53 46 -17 3 90 -26 -4 -20 ...
output:
111000011000010011011000111000001110101011100011100111000000100111101100010010000010000000000000100100000001011010001110011010101101001001010001000010100101011000001100000100011101100101000111011110000011010111000000000010000010011000001010000001000110001001101100001101
result:
ok single line: '111000011000010011011000111000...0000001000110001001101100001101'
Test #49:
score: 0
Accepted
time: 0ms
memory: 3672kb
input:
51 1 31 -92370944 -764113248 692325784 -851433764 -96851584 824901875 390848076 761934344 -413030187 -898297145 -171510577 841381560 233016216 422104783 721487331 -481096520 871381319 -715381491 -172785176 -411474589 694130790 -210954359 198576848 -682804186 759565175 -146802975 -505077293 -41499702...
output:
1111111111111111111111111111111
result:
ok single line: '1111111111111111111111111111111'
Test #50:
score: 0
Accepted
time: 0ms
memory: 3804kb
input:
32 95 1 245177609 199504310 90689086 -175898276 179952610 -177411595 10121423 -177583648 -62422073 -9211145 -157720737 -177578288 -37542857 224562278 30116853 81612384 -184921179 234707204 123542122 8971776 -164051213 -68266830 144538639 -50285622 704052 -51042388 -92307305 -92629769 132984052 -2274...
output:
1
result:
ok single line: '1'