QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#673203 | #7511. Planar Graph | Nanani | WA | 1ms | 3716kb | C++17 | 20.8kb | 2024-10-24 21:05:12 | 2024-10-24 21:05:13 |
Judging History
answer
//by 72
#include <bits/stdc++.h>
#define F(i, a, b) for(int i = a; i <= b; i ++)
#define Fd(i, a, b) for(int i = a; i >= b; i --)
#define pb push_back
#define pii pair<int, int>
#define fi first
#define se second
#define mp make_pair
#define int long long
const int mod = 998244353;
typedef long long ll;
typedef ll T;
// long long 类型可以把 fabs -> abs
typedef double db;
using namespace std;
const db pi = acosl(-1);
const db eps = 1e-8;
int sgn(T x) {
if (fabs(x) < eps) return 0;
else return x < 0 ? -1 : 1;
}
int dcmp(T x, T y) {
if (fabs(x - y) < eps) return 0;
else return x < y ? -1 : 1;
}
struct point {
T x, y;
point() {}
point(T x, T y): x(x), y(y) {}
point operator + (point B) const {return point(x + B.x, y + B.y);}
point operator - (point B) const {return point(x - B.x, y - B.y);}
point operator * (T k) const {return point(x * k, y * k);}
point operator / (T k) const {return point(x / k, y / k);}
bool operator == (point B) const {return sgn(x - B.x) == 0 && sgn(y - B.y) == 0;}
bool operator < (point B) const {return sgn(x - B.x) < 0 || (sgn(x - B.x) == 0 && sgn(y - B.y) < 0);}
T cross(point p) const {return x * p.y - y * p.x;} // 向量叉积
int left(point p) const {return sgn(cross(p));} // 0共线 1 p在左边 -1 p在右边
};
db dis(point A, point B) {return sqrtl((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));}
typedef point vct;
T dot(vct A, vct B) {return A.x * B.x + A.y * B.y;}
db len(vct A) {return sqrtl(dot(A, A));}
T len2(vct A) {return dot(A, A);}
db angle(vct A, vct B) {
db tmp = dot(A, B) / len(A) / len(B);
if(tmp > 1) tmp = 1;
else if(tmp < -1) tmp = -1;
return acosl(tmp);
// return atan2l(cross(A, B), dot(A, B));
} // 求向量a和b的夹角
T cross(vct A, vct B) {return A.x * B.y - A.y * B.x;}
T area2(point A, point B, point C) {return fabs(cross(B - A, C - A));} //平行四边形面积
vct rotate(vct A, db rad) {return vct(A.x * cosl(rad) - A.y * sinl(rad), A.x * sinl(rad) + A.y * cosl(rad));} //逆时针旋转
point rotate2(point a, point b, db rad) {point tmp = rotate(a - b, rad); return tmp + b;} // a绕着b逆时针转rad
vct normal(vct A) {return vct(-A.y / len(A), A.x / len(A));} //单位法向量
bool parallel(vct A, vct B) {return sgn(cross(A, B)) == 0;}
bool cmp2(point a, point b) { // 极角排序 逆时针
// 1e9 + long double 可以过
// 建议先用 atan2 / atan2l 对每一个点求出极角实际大小 再比较 作为cmp很慢
if(sgn(atan2l(a.y, a.x) - atan2l(b.y, b.x)) == 0) return a.x < a.y;
return atan2l(a.y, a.x) < atan2l(b.y, b.x);
}
// 极角排序
int get_region(point p) {return sgn(p.y) < 0 ? -1 : sgn(p.y) > 0 | (sgn(p.y) == 0 & sgn(p.x) < 0);}
// -1 下半平面 (不包括x轴) 1 上半平面/x轴负半轴 0 原点/x轴正半轴
T dot(point x){ return x.x * x.x + x.y * x.y; }
bool cmp_arg(point a, point b) {
// 下半平面 < 原点(极角认为是 0) < 正半轴 < 上半平面 < 负半轴
int p = get_region(a), q = get_region(b);
if(p != q) return p < q;
if(a.left(b) == 0) return dot(a) < dot(b); // 共线判线段长度
return a.left(b) == 1; // 同一区域叉积判断 否则判区间
}
bool cmpy(point A, point B) {return sgn(A.y - B.y) < 0;}
struct cmp_y {bool operator()(const point &a, const point &b) const {return sgn(a.y - b.y) < 0;}};
struct line {
point p1, p2;
line() {}
line(point p1, point p2): p1(p1), p2(p2) {}
line(point p, db rad) {
p1 = p;
if (sgn(rad - pi / 2) == 0) p2 = (p1 + point(0, 1));
else p2 = p1 + (point(1, tan(rad)));
}
line(T a, T b, T c) {
if (sgn(a) == 0) p1 = point(0, -c / b), p2 = point(1, -c / b);
else if (sgn(b) == 0) p1 = point(-c / a, 0), p2 = point(-c / a, 1);
else p1 = point(0, -c / b), p2 = point(1, (-c - a) / b);
}
line(T k, T b) {*this = line(k, -1, b);}
bool operator < (line a) {
if(p1.x == p2.x || a.p1.x == a.p2.x) return p1.x != p2.x;
return (db)(p2.y - p1.y) / (p2.x - p1.x) < (db)(a.p2.y - a.p1.y) / (a.p2.x - a.p1.x);
}
db get_rad() {
db rad = atan2l(p2.y - p1.y, p2.x - p1.x); // 得到的角度范围是 (-π, π)
if (rad < 0) rad += 2 * pi; // 如果角度为负,加上 2π 使其变为正值
return rad;
}
};
typedef line segment;
int point_line_relation(point p, line v) {return sgn(cross(v.p2 - v.p1, p - v.p1));} //1在左侧 -1在右侧
// 判断点是否在直线上 可能有精度误差
bool point_on_seg(point p, line v) {return sgn(cross(p - v.p1, v.p2 - v.p1)) == 0 && sgn(dot(p - v.p1, p - v.p2)) <= 0;}
db dis_point_line(point p, line v) {return fabs((db)cross(p - v.p1, v.p2 - v.p1)) / dis(v.p1, v.p2);}
point point_line_proj(point p, line v) {return v.p1 + (v.p2 - v.p1) * (dot(v.p2 - v.p1, p - v.p1) / len2(v.p2 - v.p1));} //投影
point point_line_symmetry(point p, line v) {point q = point_line_proj(p, v); return point(2 * q.x - p.x, 2 * q.y - p.y);} //对称点
db dis_point_seg(point p, segment v) {
if (sgn(dot(p - v.p1, v.p2 - v.p1)) < 0 || sgn(dot(p - v.p2, v.p1 - v.p2)) < 0) return min(dis(p, v.p1), dis(p, v.p2));
return dis_point_line(p, v);
}
int line_relation(line v1, line v2) {
if (sgn(cross(v1.p2 - v1.p1, v2.p2 - v2.p1)) == 0) {
if (point_line_relation(v1.p1, v2) == 0) return -1;//重合
return 0;//平行
}
return 1;//相交
}
point cross_point(line l1, line l2) { //得保证两直线不平行
auto [x1, y1] = l1;
auto [x2, y2] = l2;
point v1 = y1 - x1, v2 = y2 - x2;
point u = x1 - x2;
db t = (db)cross(v2, u) / cross(v1, v2);
return x1 + v1 * t;
}
bool cross_segment(segment l1, segment l2) {
point a = l1.p1, b = l1.p2, c = l2.p1, d = l2.p2;
T c1 = cross(b - a, c - a), c2 = cross(b - a, d - a), d1 = cross(d - c, a - c), d2 = cross(d - c, b - c);
return sgn(c1) * sgn(c2) < 0 && sgn(d1) * sgn(d2) < 0;
}
T polygon_area(vector<point> &p) { //多边形用点集来表示
int n = p.size();
T area = 0;
F(i, 0, n - 1) area += cross(p[i], p[(i + 1) % n]);
return area;
}
point polygon_center(vector<point> &p) {
int n = p.size();
point ans(0, 0);
if (polygon_area(p) == 0) return ans;
F(i, 1, n - 1) ans = ans + (p[i] + p[(i + 1) % n]) * cross(p[i], p[(i + 1) % n]);
return ans / polygon_area(p) / 6;
}
// 内部1 外部0 边界上-1
int point_in_polygon(point p, vector<point> &poly){
// O(n) 算法
int wn = 0, n = poly.size();
// wn表示回转数 回转数为0在多边形外部
// 用光线投射法算回转数 从左边穿过向量+1 从右边穿过向量-1
F(i, 0, n - 1) {
if(point_on_seg(p, line(poly[i], poly[(i + 1) % n]))) return -1;
int k = sgn(cross(poly[(i + 1) % n] - poly[i], p - poly[i]));
int d1 = sgn(poly[i].y - p.y);
int d2 = sgn(poly[(i + 1) % n].y - p.y);
if(k > 0 && d1 <= 0 && d2 > 0) wn ++;
if(k < 0 && d2 <= 0 && d1 > 0) wn --;
}
if(wn) return 1;
return 0;
}
// 内部1 外部0 边界上-1
int point_in_polygon2(point a, vector<point> &p) {
// O(logn) 凸包本身是按照以一个点为原点极角序排号的 二分后判断是否在对应线段的左侧
int n = p.size();
if(n == 1) return a == p[0] ? -1 : 0;
if(n == 2) point_on_seg(a, line(p[0], p[1])) ? -1 : 0;
if(a == p[0]) return -1;
if((p[1] - p[0]).left(a - p[0]) == -1 || (p[n - 1] - p[0]).left(a - p[0]) == 1) return 0; // 判极角序比最小的小或比最大的大
// 返回第一个cmp为false的 即第一个不在 a - p[0] 右边的点
auto cmp = [&](const point &u, const point &v) -> bool {return (u - p[0]).left(v - p[0]) == 1;};
int i = lower_bound(p.begin() + 1, p.end(), a, cmp) - p.begin();
if(i == 1) return point_on_seg(a, line(p[0], p[1])) ? -1 : 0;
if(i == n - 1 && point_on_seg(a, line(p[0], p[i]))) return -1;
int tmp = (p[i] - p[i - 1]).left(a - p[i - 1]);
return tmp == 0 ? -1 : tmp == 1;
}
// 凸多边形关于某一方向的极点,复杂度 O(logn)
int extreme(const function<vct(const point&)> &dir, const vector<point>& p) {
auto check = [&](int i) {return dir(p[i]).left(p[(i+1) % p.size()] - p[i]) >= 0;};
auto dir0 = dir(p[0]);
bool check0 = check(0);
if (!check0 && check(p.size() - 1)) return 0;
auto cmp = [&](const point &v) {
int vi = &v - &p[0];
if (vi == 0) return 1;
bool checkv = check(vi);
T t = dir0.left(v - p[0]);
if (vi == 1 && checkv == check0 && t == 0) return 1;
return checkv ^ (checkv == check0 && t <= 0);
};
return partition_point(p.begin(), p.end(), cmp) - p.begin();
}
// 过凸多边形外一点求凸多边形的切线,返回切点下标,复杂度 O(logn)
// 调用之前 check 是否该点是多边形外的点
// 原理是 标记 a 到 p_i 的直线和 p_{i + 1} 的位置关系,左边标记为L,右边标记为R。切点是两个L和R的分界线。
pair<int, int> tangent(const point &a, const vector<point>& p) {
// 凸包在line(p[i], a)左侧 在line(p[j], a)右侧 即顺序是p[i] -> p[j]
int i = extreme([&](const point &u) { return u - a; }, p);
int j = extreme([&](const point &u) { return a - u; }, p);
return {i, j};
}
// 求平行于给定直线的凸多边形的切线,返回切点下标,复杂度 O(logn)
pair<int, int> tangent(const line &a, const vector<point>& p) {
int i = extreme([&](...) { return a.p2 - a.p1; }, p);
int j = extreme([&](...) { return a.p1 - a.p2; }, p);
return {i, j};
}
// 闵可夫斯基和
vector<point> minkowski_sum(const vector<point> &p, const vector<point> &q) {
// 定义边为line
vector<line> e1(p.size()), e2(q.size()), edge(p.size() + q.size());
vector<point> res;
res.reserve(p.size() + q.size());
auto cmp = [](const line &u, const line &v) {return cmp_arg(u.p2 - u.p1, v.p2 - v.p1);};
for (int i = 0; i < p.size(); i++) e1[i] = line(p[i], p[(i + 1) % p.size()]);
for (int i = 0; i < q.size(); i++) e2[i] = line(q[i], q[(i + 1) % q.size()]);
rotate(e1.begin(), min_element(e1.begin(), e1.end(), cmp), e1.end());
rotate(e2.begin(), min_element(e2.begin(), e2.end(), cmp), e2.end());
merge(e1.begin(), e1.end(), e2.begin(), e2.end(), edge.begin(), cmp);
auto check = [&](const vector<point> &res, const point &u) {
const auto &back1 = res.back(), &back2 = *prev(res.end(), 2);
return (back1 - back2).left(u - back1) == 0 && dot(back1 - back2, u - back1) >= -eps;
};
auto u = e1[0].p1 + e2[0].p1;
// 执行闵可夫斯基和的构造
for (const auto &v : edge) {
while (res.size() > 1 && check(res, u)) res.pop_back();
res.push_back(u);
u = u + (v.p2 - v.p1);
}
if (res.size() > 1 && check(res, res[0])) res.pop_back();
return res;
}
// 动态凸包 支持插入 查询是否在凸包内
struct cmp_Arg {bool operator() (const point &a, const point &b) const {return cmp_arg(a, b);}};
struct dynamic_convex {
set<point, cmp_Arg> p; //坐标扩大三倍,便于整数运算
point o; //凸包内一点
db sum = 0;
inline auto nxt(decltype(p.begin()) it) const {it++; return it == p.end() ? p.begin() : it; }
inline auto pre(decltype(p.begin()) it) const {if (it == p.begin()) it = p.end(); return --it; }
bool is_in(const point &a) const {
if(p.size() <= 1) return false;
auto it = p.lower_bound(a * 3 - o);
if (it == p.end()) it = p.begin();
return sgn(cross((*it - *pre(it)), ((a * 3 - o) - *pre(it)))) >= 0;
}
db func(point a, point b) {
// 动态维护凸包的信息 这里是周长
return dis(a, b);
}
void add(const point &a) {
if (p.empty()) {
p.insert(a);
return;
}
sum -= func(*p.rbegin(), *p.begin());
auto it = p.lower_bound(a);
if (it != p.begin() && it != p.end()) {
sum -= func(*prev(it), *it);
sum += func(a, *it);
sum += func(a, *prev(it));
} else if (it != p.begin()) {
--it;
sum += func(*it, a);
} else if (it != p.end()) sum += func(*it, a);
p.insert(a);
sum += func(*p.begin(), *p.rbegin());
}
void del(const point &a) {
sum -= func(*p.begin(), *p.rbegin());
auto x = *p.rbegin();
auto it = p.find(a);
x = *it;
if (it != p.begin() && it != p.end() && next(it) != p.end()) {
sum -= func(*it, *prev(it));
sum -= func(*it, *next(it));
sum += func(*prev(it), *next(it));
} else if (it != p.begin()) sum -= func(*it, *prev(it));
else if (it != p.end() && next(it) != p.end()) sum -= func(*it, *next(it));
p.erase(it);
sum += func(*p.begin(), *p.rbegin());
}
void insert(point a) {
if (p.size() <= 1) {
add(a * 3);
return;
}
if (p.size() == 2) {
point u = *p.begin(), v = *p.rbegin();
o = (u + v + a * 3) / 3;
p.clear(), sum = 0; // 这里要清零
add(u - o), add(v - o), add(a * 3 - o);
return;
}
if (is_in(a)) return;
a = a * 3 - o, add(a);
auto _it = p.insert(a).first;
auto it = nxt(_it);
while (p.size() > 3 && sgn(cross((*it - a), (*nxt(it) - *it))) <= 0) del(*it), it = nxt(_it);
it = pre(_it);
while (p.size() > 3 && sgn(cross((*it - *pre(it)), (a - *it))) <= 0) del(*it), it = pre(_it);
}
db cal() {return sum / 3.0;}
};
// 平面最近点对
T closest_pair(vector<point> &p) {
int n = p.size();
multiset<point, cmp_y> s;
sort(p.begin(), p.end());
db res = 1e18;
for(int i = 0, j = 0; i < n; i ++) {
while(j < i && dcmp(p[i].x - p[j].x, res) >= 0) s.erase(s.find(p[j ++]));
for (auto it = s.lower_bound(point(p[i].x, p[i].y - res)); it != s.end() && (*it).y < p[i].y + res; it ++) {
res = min(res, dis(*it, p[i]));
} s.insert(p[i]);
}
return res;
}
vector<point> convex_hull(vector<point> &p) {
vector<point> ch;
sort(p.begin(), p.end());
p.erase(unique(p.begin(), p.end()), p.end());
int n = p.size();
int v = 0;
F(i, 0, n - 1) {
while(v >= 2 && sgn(cross(ch[v - 1] - ch[v - 2], p[i] - ch[v - 1])) <= 0) v --, ch.pop_back();
v ++, ch.push_back(p[i]);
} int j = v;
Fd(i, n - 2, 0) {
while(v > j && sgn(cross(ch[v - 1] - ch[v - 2], p[i] - ch[v - 1])) <= 0) v --, ch.pop_back();
v ++, ch.push_back(p[i]);
}
if(n > 1) ch.pop_back();
return ch;
}
T rotating_calipers(vector<point> &ch) { //旋转卡壳求凸包直径
// 点到极边具有单调性
int n = ch.size();
if(n == 2) return dis(ch[0], ch[1]);
// if(n == 2) return len2(ch[0] - ch[1]); // 求距离的平方
db res = 0; int j = 0;
F(i, 0, n - 1) {
point u = ch[i], v = ch[(i + 1) % n];
while(sgn(cross(u - ch[j], v - ch[j]) - cross(u - ch[(j + 1) % n], v - ch[(j + 1) % n])) <= 0)
j = (j + 1) % n;
// 有向面积 一定为正
res = max({res, dis(ch[j], ch[i]), dis(ch[j], ch[(i + 1) % n])});
// res = max({res, len2(ch[j] - ch[i]), len2(ch[j] - ch[(i + 1) % n])});
}
return res;
}
struct circle{
point c;
T r;
circle() {}
circle(point c, T r) : c(c), r(r) {}
circle(T x, T y, T _r) {c = point(x, y); r = _r;}
point get_point(T a){//通过圆心角求坐标
return point(c.x + cosl(a)*r, c.y + sinl(a)*r);
}
};
int point_circle_relation(point p, circle C) {
db dst = dis(p, C.c);
if(sgn(dst - C.r) < 0) return 0;
if(sgn(dst - C.r) == 0) return 1;
return 2; // 外部
}
int line_circle_relation(line v, circle C) {
db dst = dis_point_line(C.c, v);
if(sgn(dst - C.r) < 0) return 0;
if(sgn(dst - C.r) == 0) return 1;
return 2;
}
int seg_circle_relation(segment v, circle C) {
db dst = dis_point_seg(C.c, v);
if(sgn(dst - C.r) < 0) return 0;
if(sgn(dst - C.r) == 0) return 1;
return 2;
}
int line_cross_circle(line v, circle C, point &pa, point &pb) {
// 圆和直线相交的两个点 返回值是交点个数
if(line_circle_relation(v, C) == 2) return 0;
point q = point_line_proj(C.c, v);
db d = dis_point_line(C.c, v);
db k = sqrt(C.r * C.r - d * d);
if(sgn(k) == 0) {pa = q, pb = q; return 1;}
point nn = (v.p2 - v.p1) / len(v.p2 - v.p1);
pa = q + nn * k, pb = q - nn * k;
return 2;
}
db circle_overlap_area(point c1, db r1, point c2, db r2){
// 两个圆的覆盖面积
db d = len(c1 - c2);
if(r1 + r2 < d + eps) return 0.0;
if(d < fabs(r1 - r2) + eps){
db r = min(r1, r2);
return pi * r * r;
}
db x = (d * d + r1 * r1 - r2 * r2) / (2.0 * d);
db p = (r1 + r2 + d) / 2.0;
db t1 = acosl(x / r1);
db t2 = acosl((d - x) / r2);
db s1 = r1 * r1 * t1;
db s2 = r2 * r2 * t2;
db s3 = 2 * sqrt(p * (p - r1) * (p - r2) * (p - d));
return s1 + s2 - s3;
}
point circle_center(point a, point b, point c) {
// 三点确定的圆中心
db a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1 * a1 + b1 * b1) / 2;
db a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2 * a2 + b2 * b2) / 2;
db d = a1 * b2 - a2 * b1;
return point(a.x + (c1 * b2 - c2 * b1) / d, a.y + (a1 * c2 - a2 * c1) / d);
}
// 最小圆覆盖
void min_cover_circle(vector<point> &p, point &c, T &r) {
int n = p.size();
random_shuffle(p.begin(), p.end());
c = p[0], r = 0;
F(i, 1, n - 1) if(point_circle_relation(p[i], circle(c, r)) == 2) {
c = p[i], r = 0;
F(j, 0, i - 1) if(sgn(dis(p[j], c) - r) > 0) {
c = (p[i] + p[j]) / 2;
r = dis(p[j], c);
F(k, 0, j - 1) if(sgn(dis(p[k], c) - r) > 0) {
c = circle_center(p[i], p[j], p[k]);
r = dis(p[i], c);
}
}
}
}
const int N = 1005;
vector<point> a, b;
vector<int> ed[N];
pii E[N << 1];
int now = 0, vst[N << 1];
bool cmp(int x, int y) {return cmp_arg(a[x] - a[now], a[y] - a[now]);}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m, c; cin >> n >> m >> c;
map<pii, int> rk;
F(i, 0, n - 1) {
int x, y; cin >> x >> y;
a.push_back(point(x, y));
}
F(i, 0, m - 1) {
int x, y; cin >> x >> y;
b.push_back(point(x, y));
}
F(i, 0, c - 1){
int u, v; cin >> u >> v;
u --, v --;
ed[u].push_back(v), ed[v].push_back(u);
E[2 * i] = {u, v}, E[2 * i + 1] = {v, u};
rk[{u, v}] = 2 * i, rk[{v, u}] = 2 * i + 1;
}
F(i, 0, n - 1) {
now = i;
sort(ed[i].begin(), ed[i].end(), cmp);
}
vector<vector<point>> polygon;
vector<vector<int>> Polygon;
vector<int> area;
F(i, 0, 2 * c - 1) if(! vst[i]) {
int tmp = i;
vector<point> p;
vector<int> q;
p.push_back(a[E[tmp].fi]);
q.push_back(E[tmp].fi);
while(! vst[tmp]) {
vst[tmp] = 1;
auto [u, v] = E[tmp];
p.push_back(a[v]);
q.push_back(v);
int f = -1;
for(int j = 0; j < ed[v].size(); j ++) if(ed[v][j] == u) {
f = j; break;
}
assert(f != -1);
int nxt = ed[v][(f + ed[v].size() - 1) % ed[v].size()];
tmp = rk[{v, nxt}];
}
ll sum = polygon_area(p);
polygon.push_back(p), area.push_back(sum), Polygon.push_back(q);
}
auto get_area = [&](point p) -> int {
int qsy = -1;
for(int i = 0; i < polygon.size(); i ++) if(area[i] > 0 && (qsy == -1 || area[i] < area[qsy])) {
if(point_in_polygon(p, polygon[i]) == 1) qsy = i;
} // 最近的一层包含这个点的是哪个 qaq表示是否额外存在一个多边形使得该点在多边形边界上
return qsy;
};
vector<int> res(c);
auto nanani = [&](int id) -> void {
if(id == -1) return;
int sz = Polygon[id].size();
for(int i = 0; i < sz; i ++) {
int u = Polygon[id][i], v = Polygon[id][(i + 1) % sz];
res[rk[{u, v}] / 2] = 1;
}
};
int P = area.size();
vector<int> flag(P);
F(i, 0, P - 1) if(area[i] <= 0) {
flag[i] = get_area(polygon[i][0]);
}
for(auto o : b) {
int f = get_area(o);
nanani(f);
for(int i = 0; i < P; i ++) if(area[i] <= 0 && flag[i] == f) nanani(i);
}
for(auto x : res) cout << x; cout << "\n";
return 0;
}
//sldl
/*
5 1 5
-2 2
2 2
2 -2
-2 -2
0 3
0 0
1 2
2 3
3 4
1 4
1 5
*/
詳細信息
Test #1:
score: 100
Accepted
time: 1ms
memory: 3620kb
input:
4 1 3 -2 0 0 2 2 0 0 1 0 3 1 2 2 3 1 3
output:
111
result:
ok single line: '111'
Test #2:
score: 0
Accepted
time: 1ms
memory: 3616kb
input:
13 35 13 13 12 16 -3 18 4 4 -7 23 -22 9 -23 23 11 12 -1 19 -5 15 -15 5 -15 -17 11 -17 -13 -20 19 11 -12 -10 14 -3 14 7 -4 -10 -23 -19 -12 -13 1 -22 10 -21 -1 18 -9 -8 1 13 22 12 -23 -9 -9 -12 -20 4 -3 -6 17 14 -10 10 13 -5 -2 -4 -12 13 22 -18 -21 19 5 12 -18 4 0 3 -17 5 -2 -2 0 8 0 -8 1 14 -18 3 -9 ...
output:
1111111111111
result:
ok single line: '1111111111111'
Test #3:
score: -100
Wrong Answer
time: 0ms
memory: 3716kb
input:
68 59 168 51 -57 -26 -51 -31 58 -45 -78 -46 -49 -53 14 76 -69 -64 32 58 -49 -1 12 -65 28 -15 -10 29 -53 25 -32 78 -41 24 -37 69 56 54 -10 3 36 -18 46 53 -30 41 -2 -30 13 -58 -37 -20 42 -48 -38 -42 22 64 0 9 -56 7 -11 -66 -23 19 -9 -26 -6 -61 -68 57 13 -13 50 -15 -11 -77 47 -77 57 78 51 -37 56 -75 24...
output:
111111111111111111100001011000001001110111110111101011011001111110011011101111110111011101001000000001010100111111100110000100110100101101111111110011001111111100100011
result:
wrong answer 1st lines differ - expected: '011111111111111111100001011000...1111111110011001111111100100011', found: '111111111111111111100001011000...1111111110011001111111100100011'