QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#672894 | #9444. Again Permutation Problem | wangjunrui | WA | 2ms | 5796kb | C++14 | 6.5kb | 2024-10-24 19:44:11 | 2024-10-24 19:44:12 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
template <int MAX_N> struct PermBasis {
int n;
bool on[MAX_N][MAX_N];
int rCnt[MAX_N];
int r[MAX_N][MAX_N][MAX_N], invR[MAX_N][MAX_N][MAX_N];
int sLen[MAX_N];
int s[MAX_N][MAX_N * (MAX_N - 1) / 2][MAX_N];
PermBasis() {}
explicit PermBasis(int n_) : n(n_), on{}, rCnt{}, r{}, invR{}, sLen{}, s{} {
assert(0 <= n); assert(n <= MAX_N);
for (int u = 0; u < n; ++u) {
on[u][u] = true;
rCnt[u] = 1;
for (int w = u; w < n; ++w) r[u][u][w] = invR[u][u][w] = w;
}
}
bool contains(int u, const int *g) const {
if (u == n) return true;
const int v = g[u];
if (!on[u][v]) return false;
// contains(u + 1, r[u][v]^-1 g)
int h[MAX_N] = {};
for (int w = u; w < n; ++w) h[w] = invR[u][v][g[w]];
return contains(u + 1, h);
}
bool contains(const vector<int> &g) const {
return contains(0, g.data());
}
void add(int u, const int *g) {
if (contains(u, g)) return;
for (int w = u; w < n; ++w) s[u][sLen[u]][w] = g[w];
++sLen[u];
int h[MAX_N] = {};
for (int v = u; v < n; ++v) if (on[u][v]) {
// dfs(u, g r[u][v])
for (int w = u; w < n; ++w) h[w] = g[r[u][v][w]];
dfs(u, h);
}
}
void add(const vector<int> &g) {
return add(0, g.data());
}
void dfs(int u, const int *g) {
const int v = g[u];
int h[MAX_N] = {};
if (on[u][v]) {
// add(u + 1, r[u][v]^-1 g)
for (int w = u + 1; w < n; ++w) h[w] = invR[u][v][g[w]];
add(u + 1, h);
} else {
on[u][v] = true;
++rCnt[u];
for (int w = u; w < n; ++w) invR[u][v][r[u][v][w] = g[w]] = w;
for (int i = 0; i < sLen[u]; ++i) {
// dfs(u, s[u][i] g)
for (int w = u; w < n; ++w) h[w] = g[s[u][i][w]];
dfs(u, h);
}
}
}
};
////////////////////////////////////////////////////////////////////////////////
int N, M;
int P[30][30];
int main() {
for (; ~scanf("%d%d", &N, &M); ) {
for (int i = 0; i < M; ++i) for (int u = 0; u < N; ++u) {
scanf("%d", &P[i][u]);
--P[i][u];
}
PermBasis<30> pb(N);
for (int i = 0; i < M; ++i) {
pb.add(0, P[i]);
}
Mint dp[31][30][30] = {};
for (int x = 0; x < N; ++x) for (int y = x + 1; y < N; ++y) {
dp[N][x][y] += 1;
}
for (int u = N; --u >= 0; ) {
for (int v = u; v < N; ++v) if (pb.on[u][v]) {
for (int x = 0; x < N; ++x) for (int y = 0; y < N; ++y) {
const int rx = (x < u) ? x : pb.r[u][v][x];
const int ry = (y < u) ? y : pb.r[u][v][y];
dp[u][rx][ry] += dp[u + 1][x][y];
}
}
}
Mint ans = 0;
for (int x = 0; x < N; ++x) for (int y = 0; y < x; ++y) {
ans += dp[0][x][y];
}
printf("%u\n", ans.x);
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 5652kb
input:
3 2 1 2 3 2 3 1
output:
4
result:
ok 1 number(s): "4"
Test #2:
score: 0
Accepted
time: 1ms
memory: 5796kb
input:
5 2 3 4 5 1 2 1 5 4 3 2
output:
50
result:
ok 1 number(s): "50"
Test #3:
score: -100
Wrong Answer
time: 2ms
memory: 5744kb
input:
30 12 1 2 9 4 5 6 7 8 3 10 11 12 19 14 15 25 17 18 20 26 21 22 23 24 16 29 27 28 13 30 9 2 27 4 5 10 7 8 1 25 11 12 24 14 15 16 17 18 19 20 21 22 23 28 6 26 3 13 29 30 1 5 3 29 2 6 7 8 9 10 11 12 13 16 15 18 17 14 19 20 21 22 28 27 25 26 24 23 4 30 7 2 3 25 5 6 1 28 21 15 11 12 13 14 10 17 16 18 19 ...
output:
16619692
result:
wrong answer 1st numbers differ - expected: '701414999', found: '16619692'