QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#672332#7789. Outro: True Love WaitsHide_In_The_ShadowTL 620ms12004kbC++231.9kb2024-10-24 16:29:222024-10-24 16:29:23

Judging History

你现在查看的是最新测评结果

  • [2024-10-24 16:29:23]
  • 评测
  • 测评结果:TL
  • 用时:620ms
  • 内存:12004kb
  • [2024-10-24 16:29:22]
  • 提交

answer

#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define fio std::ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
using namespace std;
template<typename T>void read(T &x){
    x=0;
    char c=getchar();
    T ret=0;
    while(!isdigit(c))ret|=!(c^'-'),c=getchar();
    while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
    if(ret)x=(~x)+1;
}
template<typename T,typename ...Args>
void read(T &x,Args &...xs){
    read(x);read(xs...);
}
template<typename T>void print(T x){
    if(x<0)putchar('-'),x=(~x)+1;
    if(x>9)print(x/10);
    putchar((x-x/10*10)^48);
}
template<typename T>void wr1(T x){
    print(x);putchar(' ');
}
template<typename T>void wr2(T x){
    print(x);putchar('\n');
}
const ll P=1e9+7,N=1e6+10;
int T,k;
bitset<N>s,t;
ll sum[N],S[]={0,1,3,2},inv3;
ll qpow(ll x,ll y){
    ll ret=1;
    for(;y;y>>=1,x=x*x%P){
        if(y&1)ret=ret*x%P;
    }
    return ret;
}
int getlen(bitset<N>a){
    int pos=0;
    size_t nex=a._Find_first();
    while(nex!=a.size()){
        pos=nex;
        nex=a._Find_next(nex);
    }
    return pos;
}
int main(){
    fio;
    for(ll i=2,j=4;i<=1e6;++i,j=j*4%P){
        sum[i]=(sum[i-1]+j)%P;
    }
    inv3=qpow(3,P-2);
    cin>>T;
    while(T--){
        cin>>s>>t>>k;
        int len=max(getlen(s),getlen(t));
        for(int i=0;i<=len;++i){
            t[i]=t[i]^s[i];
        }
        len=getlen(t);
        if(!len){
            wr2(((qpow(4,k)-1+P)%P*inv3-1+P)%P);
            continue;
        }
        int x=t._Find_first();
        if(k>x/2+1){
            wr2(-1);
        }
        else{
            int pos=0;
            ll ans=sum[k];
            while(pos<=len){
                int now=t[pos]*1+t[pos+1]*2;
                ans=(ans+S[now]*(sum[pos/2+1]+1)%P)%P;
                t[pos]=0;
                t[pos+1]=0;
                pos+=2;
            }
            wr2(ans);
        }
    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 30ms
memory: 12004kb

input:

4
1 10 1
1 10 2
100 0 2
11 11 3

output:

2
-1
9
20

result:

ok 4 number(s): "2 -1 9 20"

Test #2:

score: 0
Accepted
time: 8ms
memory: 11672kb

input:

1
0 0 1

output:

0

result:

ok 1 number(s): "0"

Test #3:

score: 0
Accepted
time: 620ms
memory: 11720kb

input:

100
110111 11111 1
10110 101101 1
11010 111111 1
100110 1 1
10010 11010 1
1100 10111 1
100100 111110 1
101110 101100 1
1011 10110 1
110100 1110 1
11010 11000 1
11110 1000 1
111000 11101 1
110 1001 1
101010 11000 1
10 111110 1
110001 101000 1
1010 1000 1
10101 11 1
111011 11010 1
110001 100000 1
1100...

output:

78
59
69
70
15
38
39
3
32
60
3
29
69
12
45
52
37
3
29
64
22
39
54
69
65
27
33
76
34
18
57
13
81
15
23
70
69
36
18
23
29
42
69
54
6
0
63
3
29
15
10
16
80
24
37
59
71
13
23
31
21
34
23
48
21
47
7
44
42
3
37
75
59
29
55
39
29
28
29
70
55
16
54
47
24
18
79
60
8
26
64
58
32
6
8
37
2
68
42
44

result:

ok 100 numbers

Test #4:

score: 0
Accepted
time: 602ms
memory: 11780kb

input:

100
10011111 111 2
1011101100 1000000100 1
100011111 1001001111 1
1001100101 1100100001 1
10101000 10000100 1
1011110101 100011101 1
110100001 111011010 1
1101001100 1111101101 1
1001101 11011010 1
1101110110 1101011000 1
110011001 1100001111 2
1001111001 1011001111 1
1001110 1101110100 2
1110110100...

output:

295
248
788
431
73
930
144
319
283
76
-1
305
-1
-1
86
-1
312
293
1293
433
1179
0
884
963
1215
576
-1
1132
499
811
864
949
1322
406
526
862
-1
447
1203
1238
873
-1
-1
1131
1108
438
134
359
80
740
1057
752
31
950
1093
1261
650
235
996
876
504
925
1344
450
1010
273
-1
1144
1041
717
-1
164
-1
11
798
419...

result:

ok 100 numbers

Test #5:

score: -100
Time Limit Exceeded

input:

1000
1010011001 1100000000 1
1111001110 100100011 1
10000001 1110100110 1
1001000010 1111011110 1
11110001 101101110 1
10110001 110010 1
110111100 1111011111 1
1010101010 1111110000 1
11010110 11000110 1
1101101100 10001101 1
1101000110 111100110 3
1101100 10110 1
1001101001 10010001 1
1000110100 11...

output:


result: