QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#671048#9485. (mod N² + 1)ucup-team4435RE 0ms0kbC++239.0kb2024-10-24 10:27:112024-10-24 10:27:15

Judging History

你现在查看的是最新测评结果

  • [2024-10-24 10:27:15]
  • 评测
  • 测评结果:RE
  • 用时:0ms
  • 内存:0kb
  • [2024-10-24 10:27:11]
  • 提交

answer

#pragma GCC optimize("Ofast")

#include "bits/stdc++.h"

#define rep(i, n) for (int i = 0; i < (n); ++i)
#define rep1(i, n) for (int i = 1; i < (n); ++i)
#define rep1n(i, n) for (int i = 1; i <= (n); ++i)
#define repr(i, n) for (int i = (n) - 1; i >= 0; --i)
#define pb push_back
#define eb emplace_back
#define all(a) (a).begin(), (a).end()
#define rall(a) (a).rbegin(), (a).rend()
#define each(x, a) for (auto &x : a)
#define ar array
#define vec vector
#define range(i, n) rep(i, n)

using namespace std;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using str = string;
using pi = pair<int, int>;
using pl = pair<ll, ll>;

using vi = vector<int>;
using vl = vector<ll>;
using vpi = vector<pair<int, int>>;
using vvi = vector<vi>;

int Bit(int mask, int b) { return (mask >> b) & 1; }

template<class T>
bool ckmin(T &a, const T &b) {
    if (b < a) {
        a = b;
        return true;
    }
    return false;
}

template<class T>
bool ckmax(T &a, const T &b) {
    if (b > a) {
        a = b;
        return true;
    }
    return false;
}

// [l, r)
template<typename T, typename F>
T FindFirstTrue(T l, T r, const F &predicat) {
    --l;
    while (r - l > 1) {
        T mid = l + (r - l) / 2;
        if (predicat(mid)) {
            r = mid;
        } else {
            l = mid;
        }
    }
    return r;
}


template<typename T, typename F>
T FindLastFalse(T l, T r, const F &predicat) {
    return FindFirstTrue(l, r, predicat) - 1;
}


const ll INF = 2e18;
const int INFi = 2e9;
const int N = 5e5 + 5;
const int LG = 20;

// MOD assumed to be prime

template<typename T>
int normalize(T value, int mod) {
    if (value < -mod || value >= 2 * mod)
        value %= mod;

    if (value < 0)
        value += mod;

    if (value >= mod)
        value -= mod;

    return value;
}

template<typename T>
struct dynamic_modular_int {
    using mint = dynamic_modular_int<T>;

    int value;

    dynamic_modular_int() : value(0) {}
    dynamic_modular_int(const mint &x) : value(x.value) {}

    template<typename U, typename V = std::enable_if_t<std::is_integral<U>::value>>
    dynamic_modular_int(U value) : value(normalize(value, T::mod)) {}

    template<typename U>
    mint power(U degree) const {
        mint prod = 1;
        mint a = *this;

        for (; degree > 0; degree >>= 1, a *= a)
            if (degree & 1)
                prod *= a;

        return prod;
    }

    mint inv() const {
        return power(T::mod - 2);
    }

    mint& operator=(const mint &x) {
        value = x.value;
        return *this;
    }

    mint& operator+=(const mint &x) {
        value += x.value;
        if (value >= T::mod)
            value -= T::mod;

        return *this;
    }

    mint& operator-=(const mint &x) {
        value -= x.value;
        if (value < 0)
            value += T::mod;

        return *this;
    }

    mint& operator*=(const mint &x) {
        value = (long long) value * x.value % T::mod;
        return *this;
    }

    mint& operator/=(const mint &x) {
        return *this *= x.inv();
    }

    friend mint operator+(const mint &x, const mint &y) {
        return mint(x) += y;
    }

    friend mint operator-(const mint &x, const mint &y) {
        return mint(x) -= y;
    }

    friend mint operator*(const mint &x, const mint &y) {
        return mint(x) *= y;
    }

    friend mint operator/(const mint &x, const mint &y) {
        return mint(x) /= y;
    }

    mint& operator++() {
        ++value;
        if (value == T::mod)
            value = 0;

        return *this;
    }

    mint& operator--() {
        --value;
        if (value == -1)
            value = T::mod - 1;

        return *this;
    }

    mint operator++(int) {
        mint prev = *this;
        value++;
        if (value == T::mod)
            value = 0;

        return prev;
    }

    mint operator--(int) {
        mint prev = *this;
        value--;
        if (value == -1)
            value = T::mod - 1;

        return prev;
    }

    mint operator-() const {
        return mint(0) - *this;
    }

    bool operator==(const mint &x) const {
        return value == x.value;
    }

    bool operator!=(const mint &x) const {
        return value != x.value;
    }

    template<typename U>
    explicit operator U() {
        return value;
    }

    friend std::istream& operator>>(std::istream &in, mint &x) {
        std::string s;
        in >> s;
        x = 0;
        for (const auto c : s)
            x = x * 10 + (c - '0');

        return in;
    }

    friend std::ostream& operator<<(std::ostream &out, const mint &x) {
        return out << x.value;
    }

    static int primitive_root() {
        static int root = -1;
        if (root != -1)
            return root;

        std::vector<int> primes;
        int value = T::mod - 1;
        for (int i = 2; i * i <= value; i++)
            if (value % i == 0) {
                primes.push_back(i);
                while (value % i == 0)
                    value /= i;
            }

        if (value != 1)
            primes.push_back(value);

        for (int r = 2;; r++) {
            bool ok = true;
            for (auto p : primes)
                if ((mint(r).power((T::mod - 1) / p)).value == 1) {
                    ok = false;
                    break;
                }

            if (ok)
                return root = r;
        }
    }
};

struct dynamic_modular_int_mod {
    static int mod;
};

int dynamic_modular_int_mod::mod = 998244353;
int &MOD = dynamic_modular_int_mod::mod;

using mint = dynamic_modular_int<dynamic_modular_int_mod>;


void solve(int n, int r) {
    if (n == 3 && r == 0) {
        cout << "Yes\n";
        cout << "3 6 1\n";
        cout << "2 5 4\n";
        cout << "7 8 9\n";
        return;
    }
    int who = n * n + 1;
    for(int x = 2; x * x <= who; ++x) {
        if (who % x == 0) {
            cout << "No\n";
            return;
        }
    }

    if (!r) {
        cout << "No\n";
        return;
    }

    MOD = who;

    vector<int> a(who, -1);

    int md2 = n * n;
    {
        int root = mint::primitive_root();
        mint cur = 1;
        for (int i = 0; i < md2; ++i) {
            a[cur.value] = i;
            cur *= root;
        }
    }

    vector<int> b(md2, 0);
    for(int i = 1; i < who; ++i) b[a[i]] = i;

    vector<vi> ans(n, vi(n));
    int start = md2 - 1;
    for(int i = 0; i < n; i += 2) {
        for(int j = 0; j < n; j += 2) {
            ans[i][j] = start;
            start--;
        }
    }

    for(int i = n - 2; i >= 0; i -= 2) {
        for(int j = n - 1; j >= 0; j -= 2) {
            ans[i][j] = start;
            start--;
        }
    }


    for(int i = 1; i < n; i += 2) {
        for(int j = n - 2; j >= 0; j -= 2) {
            ans[i][j] = start;
            start--;
        }
    }

    for(int i = n - 1; i >= 0; i -= 2) {
        for(int j = 1; j < n; j += 2) {
            ans[i][j] = start;
            start--;
        }
    }
    assert(start == -1);

//    rep(i, n ){
//        rep(j, n) {
//            int x; cin >> x;
//            cout << a[x] << ' ';
//        }
//        cout << '\n';
//    }

    // r * (n^2/4) == (n^2) * (n^2-1) / 2
    // 13 * 4 == 8 * 15
//    vi kek;
//    sort(all(kek));
//    assert(kek[0] == kek.back());

    bool ok = false;
    int rr = a[r];
//    cerr << a[2] << '\n';
    rep(add, n * n) {
        int cur = (ans[0][0] + ans[1][1] + ans[0][1] + ans[1][0] + add * 4) % md2;
//        cerr << (rr * (n * n / 4)) % (n * n) << ' ' << (cur * (n * n / 4)) % (n * n) << endl;
        if (cur != rr) continue;
        ok = true;
        rep(i, n) {
            rep(j, n) {
                ans[i][j] = (ans[i][j] + add) % md2;
            }
        }
    }
    if (!ok) {
        cout << "No\n";
        return;
    }

    vector<vector<mint>> res(n, vector<mint>(n));
    rep(i, n) {
        rep(j, n) {
            res[i][j] = b[ans[i][j]];
        }
    }
    assert(mint(r) == res[0][0] * res[0][1] * res[1][1] * res[1][0]);
    cout << "Yes\n";
    rep(i, n) {
        rep(j, n) {
            cout << res[i][j] << ' ';
        }
        cout << '\n';
    }
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout << setprecision(12) << fixed;
    int t = 1;

//    for(int q = 2; q <= 50; ++q) {
//        int cnt = (q / 2) * (q / 2);
//        int pr = 5;
//        int need = q * q + 1;
//        while (pr < need && need % pr != 0) pr++;
//        if (pr < need && (need - 1) / pr >= cnt) {
//            cerr << q << endl;
//        }
//    }
    cin >> t;
    rep(i, t) {
        int n, r; cin >> n >> r;
        solve(n, r);
    }
//    for(int n = 2; n <= 50; ++n) {
//        solve(n, 1);
//    }
    return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 0
Runtime Error

input:

3
2 4
3 3
4 2

output:


result: