QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#667820#9465. 基础 01 练习题cmk6660 938ms526848kbC++2318.0kb2024-10-23 08:25:552024-10-23 08:26:04

Judging History

你现在查看的是最新测评结果

  • [2024-10-23 08:26:04]
  • 评测
  • 测评结果:0
  • 用时:938ms
  • 内存:526848kb
  • [2024-10-23 08:25:55]
  • 提交

answer

/*  _              _     _                                             _       __      __      __   
   / \     _   _  | |_  | |__     ___    _ __   _    ___   _ __ ___   | | __  / /_    / /_    / /_  
  / _ \   | | | | | __| | '_ \   / _ \  | '__| (_)  / __| | '_ ` _ \  | |/ / | '_ \  | '_ \  | '_ \ 
 / ___ \  | |_| | | |_  | | | | | (_) | | |     _  | (__  | | | | | | |   <  | (_) | | (_) | | (_) |
/_/   \_\  \__,_|  \__| |_| |_|  \___/  |_|    (_)  \___| |_| |_| |_| |_|\_\  \___/   \___/   \___/ 
[Created Time:       2024-10-22 20:30:21]
[Last Modified Time: 2024-10-23 08:25:38] */
#pragma GCC optimize("Ofast", "unroll-loops")
#include<bits/stdc++.h>
#ifdef LOCAL
#include"debug.h"
#else
#define D(...) ((void)0)
#endif
using namespace std; using ll = long long;
#define For(i, j, k) for ( int i = (j) ; i <= (k) ; i++ )
#define Fol(i, j, k) for ( int i = (j) ; i >= (k) ; i-- )
namespace FastIO
{
#define USE_FastIO
// ------------------------------
// #define DISABLE_MMAP
// ------------------------------
#if ( defined(LOCAL) || defined(_WIN32) ) && !defined(DISABLE_MMAP)
#define DISABLE_MMAP
#endif
#ifdef LOCAL
	inline void _chk_i() {}
	inline char _gc_nochk() { return getchar(); }
	inline char _gc() { return getchar(); }
	inline void _chk_o() {}
	inline void _pc_nochk(char c) { putchar(c); }
	inline void _pc(char c) { putchar(c); }
	template < int n > inline void _pnc_nochk(const char *c) { for ( int i = 0 ; i < n ; i++ ) putchar(c[i]); }
#else
#ifdef DISABLE_MMAP
	inline constexpr int _READ_SIZE = 1 << 18; inline static char _read_buffer[_READ_SIZE + 40], *_read_ptr = nullptr, *_read_ptr_end = nullptr; static inline bool _eof = false;
	inline void _chk_i() { if ( __builtin_expect(!_eof, true) && __builtin_expect(_read_ptr_end - _read_ptr < 40, false) ) { int sz = _read_ptr_end - _read_ptr; if ( sz ) memcpy(_read_buffer, _read_ptr, sz); char *beg = _read_buffer + sz; _read_ptr = _read_buffer, _read_ptr_end = beg + fread(beg, 1, _READ_SIZE, stdin); if ( __builtin_expect(_read_ptr_end != beg + _READ_SIZE, false) ) _eof = true, *_read_ptr_end = EOF; } }
	inline char _gc_nochk() { return __builtin_expect(_eof && _read_ptr == _read_ptr_end, false) ? EOF : *_read_ptr++; }
	inline char _gc() { _chk_i(); return _gc_nochk(); }
#else
#include<sys/mman.h>
#include<sys/stat.h>
	inline static char *_read_ptr = (char *)mmap(nullptr, [] { struct stat s; return fstat(0, &s), s.st_size; } (), 1, 2, 0, 0);
	inline void _chk_i() {}
	inline char _gc_nochk() { return *_read_ptr++; }
	inline char _gc() { return *_read_ptr++; }
#endif
	inline constexpr int _WRITE_SIZE = 1 << 18; inline static char _write_buffer[_WRITE_SIZE + 40], *_write_ptr = _write_buffer;
	inline void _chk_o() { if ( __builtin_expect(_write_ptr - _write_buffer > _WRITE_SIZE, false) ) fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout), _write_ptr = _write_buffer; }
	inline void _pc_nochk(char c) { *_write_ptr++ = c; }
	inline void _pc(char c) { *_write_ptr++ = c, _chk_o(); }
	template < int n > inline void _pnc_nochk(const char *c) { memcpy(_write_ptr, c, n), _write_ptr += n; }
	inline struct _auto_flush { inline ~_auto_flush() { fwrite(_write_buffer, 1, _write_ptr - _write_buffer, stdout); } } _auto_flush;
#endif
#define println println_ // don't use C++23 std::println
	template < class T > inline constexpr bool _is_signed = numeric_limits < T >::is_signed;
	template < class T > inline constexpr bool _is_unsigned = numeric_limits < T >::is_integer && !_is_signed < T >;
#if __SIZEOF_LONG__ == 64
	template <> inline constexpr bool _is_signed < __int128 > = true;
	template <> inline constexpr bool _is_unsigned < __uint128_t > = true;
#endif
	inline bool _isgraph(char c) { return c >= 33; }
	inline bool _isdigit(char c) { return 48 <= c && c <= 57; } // or faster, remove c <= 57
	constexpr struct _table {
#ifndef LOCAL
	int i[65536];
#endif
	char o[40000]; constexpr _table() :
#ifndef LOCAL
	i{},
#endif
	o{} {
#ifndef LOCAL
	for ( int x = 0 ; x < 65536 ; x++ ) i[x] = -1; for ( int x = 0 ; x <= 9 ; x++ ) for ( int y = 0 ; y <= 9 ; y++ ) i[x + y * 256 + 12336] = x * 10 + y;
#endif
	for ( int x = 0 ; x < 10000 ; x++ ) for ( int y = 3, z = x ; ~y ; y-- ) o[x * 4 + y] = z % 10 + 48, z /= 10; } } _table;
	template < class T, int digit > inline constexpr T _pw10 = 10 * _pw10 < T, digit - 1 >;
	template < class T > inline constexpr T _pw10 < T, 0 > = 1;
	inline void read(char &c) { do c = _gc(); while ( !_isgraph(c) ); }
	inline void read_cstr(char *s) { char c = _gc(); while ( !_isgraph(c) ) c = _gc(); while ( _isgraph(c) ) *s++ = c, c = _gc(); *s = 0; }
	inline void read(string &s) { char c = _gc(); s.clear(); while ( !_isgraph(c) ) c = _gc(); while ( _isgraph(c) ) s.push_back(c), c = _gc(); }
	template < class T, bool neg >
#ifndef LOCAL
	__attribute__((no_sanitize("undefined")))
#endif
	inline void _read_int_suf(T &x) { _chk_i(); char c; while
#ifndef LOCAL
	( ~_table.i[*reinterpret_cast < unsigned short *& >(_read_ptr)] ) if constexpr ( neg ) x = x * 100 - _table.i[*reinterpret_cast < unsigned short *& >(_read_ptr)++]; else x = x * 100 + _table.i[*reinterpret_cast < unsigned short *& >(_read_ptr)++]; if
#endif
	( _isdigit(c = _gc_nochk()) ) if constexpr ( neg ) x = x * 10 - ( c & 15 ); else x = x * 10 + ( c & 15 ); }
	template < class T, enable_if_t < _is_signed < T >, int > = 0 > inline void read(T &x) { char c; while ( !_isdigit(c = _gc()) ) if ( c == 45 ) { _read_int_suf < T, true >(x = -( _gc_nochk() & 15 )); return; } _read_int_suf < T, false >(x = c & 15); }
	template < class T, enable_if_t < _is_unsigned < T >, int > = 0 > inline void read(T &x) { char c; while ( !_isdigit(c = _gc()) ); _read_int_suf < T, false >(x = c & 15); }
	inline void write(bool x) { _pc(x | 48); }
	inline void write(char c) { _pc(c); }
	inline void write_cstr(const char *s) { while ( *s ) _pc(*s++); }
	inline void write(const string &s) { for ( char c : s ) _pc(c); }
	template < class T, bool neg, int digit > inline void _write_int_suf(T x) { if constexpr ( digit == 4 ) _pnc_nochk < 4 >(_table.o + ( neg ? -x : x ) * 4); else _write_int_suf < T, neg, digit / 2 >(x / _pw10 < T, digit / 2 >), _write_int_suf < T, neg, digit / 2 >(x % _pw10 < T, digit / 2 >); }
	template < class T, bool neg, int digit > inline void _write_int_pre(T x) { if constexpr ( digit <= 4 ) if ( digit >= 3 && ( neg ? x <= -100 : x >= 100 ) ) if ( digit >= 4 && ( neg ? x <= -1000 : x >= 1000 ) ) _pnc_nochk < 4 >(_table.o + ( neg ? -x : x ) * 4); else _pnc_nochk < 3 >(_table.o + ( neg ? -x : x ) * 4 + 1); else if ( digit >= 2 && ( neg ? x <= -10 : x >= 10 ) ) _pnc_nochk < 2 >(_table.o + ( neg ? -x : x ) * 4 + 2); else _pc_nochk(( neg ? -x : x ) | 48); else { constexpr int cur = 1 << __lg(digit - 1); if ( neg ? x <= -_pw10 < T, cur > : x >= _pw10 < T, cur > ) _write_int_pre < T, neg, digit - cur >(x / _pw10 < T, cur >), _write_int_suf < T, neg, cur >(x % _pw10 < T, cur >); else _write_int_pre < T, neg, cur >(x); } }
	template < class T, enable_if_t < _is_signed < T >, int > = 0 > inline void write(T x) { if ( x >= 0 ) _write_int_pre < T, false, numeric_limits < T >::digits10 + 1 >(x); else _pc_nochk(45), _write_int_pre < T, true, numeric_limits < T >::digits10 + 1 >(x); _chk_o(); }
	template < class T, enable_if_t < _is_unsigned < T >, int > = 0 > inline void write(T x) { _write_int_pre < T, false, numeric_limits < T >::digits10 + 1 >(x), _chk_o(); }
	template < size_t N, class ...T > inline void _read_tuple(tuple < T... > &x) { read(get < N >(x)); if constexpr ( N + 1 != sizeof...(T) ) _read_tuple < N + 1, T... >(x); }
	template < size_t N, class ...T > inline void _write_tuple(const tuple < T... > &x) { write(get < N >(x)); if constexpr ( N + 1 != sizeof...(T) ) _pc(32), _write_tuple < N + 1, T... >(x); }
	template < class ...T > inline void read(tuple < T... > &x) { _read_tuple < 0, T... >(x); }
	template < class ...T > inline void write(const tuple < T... > &x) { _write_tuple < 0, T... >(x); }
	template < class T1, class T2 > inline void read(pair < T1, T2 > &x) { read(x.first), read(x.second); }
	template < class T1, class T2 > inline void write(const pair < T1, T2 > &x) { write(x.first), _pc(32), write(x.second); }
	template < class T > inline auto read(T &x) -> decltype(x.read(), void()) { x.read(); }
	template < class T > inline auto write(const T &x) -> decltype(x.write(), void()) { x.write(); }
	template < class T1, class ...T2 > inline void read(T1 &x, T2 &...y) { read(x), read(y...); }
	template < class ...T > inline void read_cstr(char *x, T *...y) { read_cstr(x), read_cstr(y...); }
	template < class T1, class ...T2 > inline void write(const T1 &x, const T2 &...y) { write(x), write(y...); }
	template < class ...T > inline void write_cstr(const char *x, const T *...y) { write_cstr(x), write_cstr(y...); }
	template < class T > inline void print(const T &x) { write(x); }
	inline void print_cstr(const char *x) { write_cstr(x); }
	template < class T1, class ...T2 > inline void print(const T1 &x, const T2 &...y) { write(x), _pc(32), print(y...); }
	template < class ...T > inline void print_cstr(const char *x, const T *...y) { write_cstr(x), _pc(32), print_cstr(y...); }
	inline void println() { _pc(10); }
	inline void println_cstr() { _pc(10); }
	template < class ...T > inline void println(const T &...x) { print(x...), _pc(10); }
	template < class ...T > inline void println_cstr(const T *...x) { print_cstr(x...), _pc(10); }
}	using FastIO::read, FastIO::read_cstr, FastIO::write, FastIO::write_cstr, FastIO::println, FastIO::println_cstr;
template < auto P_ > class MontgomeryModInt
{
	using S = decltype(P_); static_assert(is_same_v < S, int > || is_same_v < S, long long >);
	static_assert(P_ & 1 && 0 < P_ && P_ < ( (S)1 << ( sizeof(S) * 8 - 2 ) ));
	using U = conditional_t < is_same_v < S, int >, unsigned, unsigned long long >; using D = conditional_t < is_same_v < S, int >, unsigned long long, __uint128_t >;
	inline constexpr static U uinv(U x) { U y = x; for ( int i = is_same_v < S, int > ? 4 : 5 ; i-- ; ) y *= 2 - x * y; return y; }
	constexpr static U P = P_, P2 = P << 1, R = -uinv(P), R2 = -(D)P % P; static_assert(P * R == -1);
	inline constexpr static U reduce(D x) { return ( x + (U)x * R * (D)P ) >> ( sizeof(U) * 8 ); }
	inline constexpr MontgomeryModInt(U x, int) : v(x) {} U v;
public:
	inline constexpr static S mod() { return P; }
	inline constexpr MontgomeryModInt() : v(0) {}
	inline constexpr MontgomeryModInt(const MontgomeryModInt &x) : v(x.v) {}
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 > inline constexpr MontgomeryModInt(T x) : v(reduce((D)R2 * ( numeric_limits < T >::is_signed && x < 0 ? ( ( x + P < 0 ) && ( x %= P ), x + P ) : ( ( sizeof(T) > sizeof(U) && x >= (T)1 << sizeof(U) ) && ( x %= P ), x ) ))) {}
	inline constexpr S val()const { U x = reduce(v); return ( x - P ) >> ( sizeof(U) * 8 - 1 ) ? x : x - P; }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 > explicit inline constexpr operator T()const { return val(); }
	inline constexpr friend bool operator==(const MontgomeryModInt &x, const MontgomeryModInt &y) { return x.val() == y.val(); }
	inline constexpr friend bool operator!=(const MontgomeryModInt &x, const MontgomeryModInt &y) { return x.val() != y.val(); }
	inline constexpr MontgomeryModInt &operator=(const MontgomeryModInt &x) & { v = x.v; return *this; }
	inline constexpr MontgomeryModInt &operator++() & { return *this += 1; }
	inline constexpr MontgomeryModInt operator++(int) & { MontgomeryModInt x = *this; *this += 1; return x; }
	inline constexpr MontgomeryModInt &operator--() & { return *this -= 1; }
	inline constexpr MontgomeryModInt operator--(int) & { MontgomeryModInt x = *this; *this -= 1; return x; }
	inline constexpr MontgomeryModInt operator-()const { return MontgomeryModInt(v ? P2 - v : 0, 0); }
	inline constexpr MontgomeryModInt &operator+=(const MontgomeryModInt &x) & { v += x.v, ( v - P2 ) >> ( sizeof(U) * 8 - 1 ) || ( v -= P2 ); return *this; }
	inline constexpr MontgomeryModInt &operator-=(const MontgomeryModInt &x) & { v -= x.v, v >> ( sizeof(U) * 8 - 1 ) && ( v += P2 ); return *this; }
	inline constexpr MontgomeryModInt &operator*=(const MontgomeryModInt &x) & { v = reduce((D)v * x.v); return *this; }
	inline constexpr MontgomeryModInt &operator/=(const MontgomeryModInt &x) & { return *this *= x.inv(); }
	inline constexpr friend MontgomeryModInt operator+(MontgomeryModInt x, const MontgomeryModInt &y) { return x += y; }
	inline constexpr friend MontgomeryModInt operator-(MontgomeryModInt x, const MontgomeryModInt &y) { return x -= y; }
	inline constexpr friend MontgomeryModInt operator*(MontgomeryModInt x, const MontgomeryModInt &y) { return x *= y; }
	inline constexpr friend MontgomeryModInt operator/(MontgomeryModInt x, const MontgomeryModInt &y) { return x /= y; }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 > inline constexpr MontgomeryModInt qpow(T y)const { MontgomeryModInt x = *this, z = 1; while ( y ) { if ( y & 1 ) z *= x; if ( y >>= 1 ) x *= x; } return z; }
	template < class T, enable_if_t < numeric_limits < T >::is_integer, int > = 0 > inline constexpr friend MontgomeryModInt qpow(const MontgomeryModInt &x, T y) { return x.qpow(y); }
	inline constexpr MontgomeryModInt inv()const { return qpow(P - 2); }
	inline constexpr friend MontgomeryModInt inv(const MontgomeryModInt &x) { return x.inv(); }
	inline friend istream &operator>>(istream &is, MontgomeryModInt &x) { S y; is >> y, x = y; return is; }
	inline friend ostream &operator<<(ostream &os, const MontgomeryModInt &x) { return os << x.val(); }
#ifdef USE_FastIO
	inline void read() & { S x; ::read(x), *this = x; }
	inline void write()const { ::write(val()); }
#endif
};	using MI = MontgomeryModInt < 1145141919810000037ll >; // 1000000007 1145141919810000037ll
mt19937 rnd(chrono::system_clock::now().time_since_epoch().count());
template < class T > inline T R(T l, T r) { return uniform_int_distribution < T >(l, r)(rnd); }
const MI B = MI::mod() / 2 + R(-2333333333ll, 2333333333ll); MI pw[200009], w[200009];
int n, q, _, o, l, r, lp, rp, rt[200009], id[200009], mn[200009], mx[200009];
int pp[200009], qq[200009], cnt[400009], sz[400009];
vector < pair < int, int > > mdf[200009], mdf2[200009]; vector < int > vec[200009]; ll ans;
inline ll calc(int x) { return max(0ll, (ll)cnt[x] * sz[x] - 1); }
namespace DSU
{
	int fa[400009];
	inline void init(int n) { iota(fa + 1, fa + n + 2, 1); }
	inline int fat(int x) { return x == fa[x] ? x : fa[x] = fat(fa[x]); }
	inline void mrg(int l, int r)
	{
		for ( l = fat(l) ; l < r ; )
		{
			int p = fat(l + 1); ans -= calc(l) + calc(p);
			cnt[p] += cnt[l], sz[p] += sz[l], ans += calc(p), l = fa[l] = p;
		}
	}
}
namespace ST
{
	struct node
	{
		int lc, rc; MI h; bool lz;
		inline void apply(int len) { h = w[len] - h, lz = !lz; }
	}	t[20000009]; int cnt;
	inline int &cpy(int &p) { return t[++cnt] = t[p], p = cnt; }
	inline int &lc(int p) { return t[p].lc; }
	inline int &rc(int p) { return t[p].rc; }
	inline int md(int l, int r) { return ( l + r ) >> 1; }
	inline void pu(int p, int l, int r) { t[p].h = t[lc(p)].h * pw[r - md(l, r)] + t[rc(p)].h; }
	inline void pd(int p, int l, int r)
	{
		if ( !t[p].lz ) return;
		t[cpy(lc(p))].apply(md(l, r) - l + 1), t[cpy(rc(p))].apply(r - md(l, r)), t[p].lz = false;
	}
	inline void flip(int &p, int l, int r, int lp, int rp)
	{
		if ( l > rp || r < lp ) return;
		cpy(p);
		if ( lp <= l && r <= rp ) { t[p].apply(r - l + 1); return; }
		pd(p, l, r), flip(lc(p), l, md(l, r), lp, rp),
					 flip(rc(p), md(l, r) + 1, r, lp, rp), pu(p, l, r);
	}
	inline int cmp(int p, int q, int l, int r)
	{
		if ( t[p].h == t[q].h ) return 0;
		if ( !t[q].h || t[p].h == w[r - l + 1] ) return  1;
		if ( !t[p].h || t[q].h == w[r - l + 1] ) return -1;
		pd(p, l, r), pd(q, l, r); int res = cmp(lc(p), lc(q), l, md(l, r));
		return res ? res : cmp(rc(p), rc(q), md(l, r) + 1, r);
	}
}
namespace ST_
{
	struct node
	{
		int mn0, mx0, mn1, mx1, s; bool lz;
		inline void apply(int len) { swap(mn0, mn1), swap(mx0, mx1), s = len - s, lz = !lz; }
	}	t[200009 << 2];
	inline int lc(int p) { return p << 1; }
	inline int rc(int p) { return p << 1 | 1; }
	inline int md(int l, int r) { return ( l + r ) >> 1; }
	inline void pu(int p)
	{
		t[p].mn0 = min(t[lc(p)].mn0, t[rc(p)].mn0), t[p].mx0 = max(t[lc(p)].mx0, t[rc(p)].mx0),
		t[p].mn1 = min(t[lc(p)].mn1, t[rc(p)].mn1), t[p].mx1 = max(t[lc(p)].mx1, t[rc(p)].mx1),
		t[p].s = t[lc(p)].s + t[rc(p)].s;
	}
	inline void pd(int p, int l, int r) 
	{
		if ( t[p].lz ) t[lc(p)].apply(md(l, r) - l + 1),
					   t[rc(p)].apply(r - md(l, r)), t[p].lz = false;
	}
	inline void build(int p, int l, int r)
	{
		if ( l == r ) { t[p].mn0 = t[p].mx0 = id[l], t[p].mn1 = n + 1; return; }
		build(lc(p), l, md(l, r)), build(rc(p), md(l, r) + 1, r), pu(p);
	}
	inline void flip(int p, int l, int r, int lp, int rp)
	{
		if ( l > rp || r < lp ) return;
		if ( lp <= l && r <= rp ) { t[p].apply(r - l + 1); return; }
		pd(p, l, r), flip(lc(p), l, md(l, r), lp, rp), flip(rc(p), md(l, r) + 1, r, lp, rp), pu(p);
	}
}
int main()
{
	read(n, q, _), *pw = 1;
	For(i, 1, n) pw[i] = pw[i - 1] * B, w[i] = w[i - 1] + pw[i - 1];
	while ( q-- ) read(l, r, lp, rp), mdf[l].emplace_back(lp, rp), mdf[r + 1].emplace_back(lp, rp),
									  mdf2[lp].emplace_back(l, r), mdf2[rp + 1].emplace_back(l, r);
	For(i, 1, n)
	{
		id[i] = i, rt[i] = rt[i - 1];
		for ( auto [l, r] : mdf[i] ) ST::flip(rt[i], 1, n, l, r);
	}
	stable_sort(id + 1, id + n + 1, [&](int x, int y) { return ST::cmp(rt[x], rt[y], 1, n) < 0; });
	ST_::build(1, 1, n);
	For(i, 1, n)
	{
		for ( auto [l, r] : mdf2[i] ) ST_::flip(1, 1, n, l, r);
		mn[i] = ST_::t[1].mn1, mx[i] = ST_::t[1].mx0, vec[n - ST_::t[1].s].push_back(i);
	}
	For(i, 0, n)
	{
		if ( i ) pp[i] = ++o, sz[o] = 1;
		for ( int j : vec[i] ) qq[j] = ++o;
	}
	DSU::init(n + n);
	For(i, 1, n)
	{
		if ( mn[i] <= mx[i] ) DSU::mrg(pp[mn[i]], pp[mx[i]]);
		o = DSU::fat(qq[i]), ans -= calc(o), cnt[o]++, ans += calc(o);
		if ( _ || i == n ) write((ll)i * n - ans, i == n ? '\n' : ' ');
	}
	return 0;
}
// 想上GM捏 想上GM捏 想上GM捏 想上GM捏 想上GM捏
// 伊娜可爱捏 伊娜贴贴捏

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 0
Wrong Answer

Test #1:

score: 5
Accepted
time: 36ms
memory: 473236kb

input:

4 1000 0
2 3 1 2
1 3 1 3
1 2 1 2
1 2 3 4
1 4 2 4
1 3 1 2
1 4 1 2
1 3 1 4
3 3 2 3
1 2 2 4
4 4 1 3
3 3 3 4
3 4 3 4
2 3 1 1
1 2 2 4
1 4 3 4
3 4 1 2
1 2 2 3
3 4 3 3
1 2 4 4
4 4 2 4
1 4 1 1
1 1 1 3
2 3 2 3
1 1 2 4
2 3 2 4
3 3 1 4
3 3 3 3
1 3 3 3
2 3 2 4
3 3 2 2
1 3 2 4
1 3 1 2
3 4 1 2
2 3 1 3
1 1 1 2
1 2...

output:

1

result:

ok 1 number(s): "1"

Test #2:

score: 5
Accepted
time: 48ms
memory: 474780kb

input:

4 1000 0
1 4 3 3
2 3 4 4
3 4 3 4
3 4 1 2
1 4 2 4
2 3 1 3
3 4 2 4
2 3 3 3
3 4 1 3
1 3 1 4
2 3 1 3
1 1 2 2
1 4 3 4
1 4 1 3
1 2 3 4
1 2 1 2
2 3 1 4
2 2 2 2
1 3 1 3
2 2 2 4
1 2 1 4
1 1 1 1
1 2 3 4
4 4 1 3
2 4 1 3
1 1 1 3
1 4 2 2
2 3 1 2
2 2 1 2
1 2 1 4
1 4 2 4
1 2 1 3
1 2 1 3
2 4 2 2
1 2 1 1
1 2 1 3
2 4...

output:

1

result:

ok 1 number(s): "1"

Test #3:

score: 0
Wrong Answer
time: 36ms
memory: 473016kb

input:

4 1000 0
1 4 1 2
1 4 2 2
1 4 3 4
2 4 4 4
2 3 3 4
2 4 2 4
1 2 2 2
4 4 2 4
1 3 1 3
1 4 1 4
3 3 3 4
4 4 2 3
2 3 1 4
2 2 1 3
2 3 2 4
2 2 1 4
1 2 2 3
1 4 1 3
4 4 1 4
3 4 1 4
1 2 1 2
1 2 1 3
2 2 3 3
1 2 1 4
1 1 1 4
2 2 1 4
1 4 3 4
2 4 2 4
2 2 1 4
3 4 1 3
2 3 2 4
1 3 1 4
1 3 1 4
3 3 1 3
1 2 1 3
3 3 1 4
1 4...

output:

1

result:

wrong answer 1st numbers differ - expected: '5', found: '1'

Subtask #2:

score: 0
Wrong Answer

Test #4:

score: 10
Accepted
time: 141ms
memory: 483428kb

input:

50 200000 0
1 45 2 6
29 44 2 6
31 37 2 50
2 37 1 19
7 13 8 38
38 46 19 38
10 30 30 46
22 42 1 45
5 35 24 27
10 36 19 31
20 47 17 35
7 9 23 42
15 26 31 42
7 8 7 42
1 26 33 48
2 5 30 36
17 44 21 44
5 44 24 36
19 47 15 17
29 36 2 42
31 34 11 41
9 24 12 30
30 43 8 20
2 12 13 20
11 12 10 15
14 22 3 29
2 ...

output:

1

result:

ok 1 number(s): "1"

Test #5:

score: 0
Wrong Answer
time: 45ms
memory: 473892kb

input:

50 70 0
1 50 1 50
24 50 1 1
50 50 2 2
34 50 3 3
36 50 4 4
32 50 5 5
18 50 6 6
12 50 7 7
6 50 8 8
28 50 9 9
38 50 10 10
4 50 11 11
26 50 12 12
14 50 13 13
46 50 14 14
2 50 15 15
8 50 16 16
44 50 17 17
10 50 18 18
30 50 19 19
22 50 20 20
48 50 21 21
20 50 22 22
42 50 23 23
40 50 24 24
16 50 25 25
16 5...

output:

2173

result:

wrong answer 1st numbers differ - expected: '2280', found: '2173'

Subtask #3:

score: 0
Wrong Answer

Test #8:

score: 10
Accepted
time: 385ms
memory: 492120kb

input:

5000 200000 0
1438 2561 3478 4930
1740 4634 87 3003
590 3275 1376 1681
2035 2793 2004 4945
567 3159 550 4470
61 3039 3431 3519
2654 3834 3460 4960
591 3560 409 443
345 2599 746 2891
1288 4570 1577 4402
249 377 1951 4534
2411 2455 294 1192
1679 3153 1645 4259
1735 1856 601 668
477 4881 411 2094
424 1...

output:

1

result:

ok 1 number(s): "1"

Test #9:

score: 10
Accepted
time: 120ms
memory: 486928kb

input:

5000 200000 0
4336 5000 1 1
686 5000 2 2
3130 5000 3 3
672 5000 4 4
1664 5000 5 5
1480 5000 6 6
1326 5000 7 7
3726 5000 8 8
4170 5000 9 9
4794 5000 10 10
3374 5000 11 11
1836 5000 12 12
310 5000 13 13
2146 5000 14 14
3266 5000 15 15
820 5000 16 16
1152 5000 17 17
2876 5000 18 18
134 5000 19 19
828 5...

output:

24995

result:

ok 1 number(s): "24995"

Test #10:

score: 10
Accepted
time: 119ms
memory: 485512kb

input:

5000 200000 0
1410 5000 1 1
3340 5000 2 2
4202 5000 3 3
4450 5000 4 4
914 5000 5 5
4514 5000 6 6
4 5000 7 7
238 5000 8 8
3182 5000 9 9
3302 5000 10 10
2136 5000 11 11
1504 5000 12 12
3204 5000 13 13
2078 5000 14 14
4026 5000 15 15
3690 5000 16 16
4430 5000 17 17
1304 5000 18 18
2156 5000 19 19
4154 ...

output:

10000

result:

ok 1 number(s): "10000"

Test #11:

score: 0
Wrong Answer
time: 146ms
memory: 486816kb

input:

5000 200000 0
1556 3445 1 1
1803 3198 2 2
790 4211 3 3
564 4437 4 4
1128 3873 5 5
129 4872 6 6
2062 2939 7 7
1480 3521 8 8
1252 3749 9 9
942 4059 10 10
111 4890 11 11
915 4086 12 12
1575 3426 13 13
2186 2815 14 14
392 4609 15 15
1689 3312 16 16
492 4509 17 17
866 4135 18 18
381 4620 19 19
92 4909 20...

output:

5001

result:

wrong answer 1st numbers differ - expected: '34989', found: '5001'

Subtask #4:

score: 0
Wrong Answer

Test #14:

score: 0
Wrong Answer
time: 397ms
memory: 489524kb

input:

5000 200000 1
565 4401 1659 1826
429 1640 2999 3495
572 3994 9 3863
3844 4284 2307 3144
1054 1943 358 2592
727 4248 29 1171
1685 2392 4559 4929
1149 2787 1204 1947
2349 2619 405 998
1910 2786 25 1275
912 3475 4384 4387
3822 4895 1849 4548
3082 4749 3457 4220
3174 4885 117 1085
2517 3919 4325 4869
17...

output:

3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...

result:

wrong answer 1st numbers differ - expected: '5000', found: '3'

Subtask #5:

score: 0
Wrong Answer

Test #21:

score: 0
Wrong Answer
time: 811ms
memory: 526848kb

input:

200000 200000 1
1 2 1 6
3 4 1 1
5 6 1 5
7 8 1 3
9 10 1 3
11 12 1 6
13 14 1 5
15 16 1 6
17 18 1 6
19 20 1 1
21 22 1 4
23 24 1 5
25 26 1 2
27 28 1 4
29 30 1 3
31 32 1 2
33 34 1 6
35 36 1 3
37 38 1 2
39 40 1 2
41 42 1 3
43 44 1 1
45 46 1 2
47 48 1 3
49 50 1 4
51 52 1 5
53 54 1 1
55 56 1 5
57 58 1 5
59 ...

output:

200000 200006 200001 200001 200001 200001 200001 400001 400001 600001 800001 800001 1000001 1200001 1400001 1600001 1600001 1800001 2000001 2000001 2200001 2400001 2400001 2600001 2800001 3000001 3200001 3400001 3600001 3600001 3800001 4000001 4200001 4400001 4600001 4800001 4800001 5000001 5200001 ...

result:

wrong answer 2nd numbers differ - expected: '400000', found: '200006'

Subtask #6:

score: 0
Runtime Error

Test #28:

score: 0
Runtime Error

input:

200000 200000 0
91264 123676 6826 154505
121351 188051 108158 131448
65413 163961 26771 116304
93852 110556 34929 187363
31794 142162 33578 38712
26574 67763 178013 197235
46436 146042 95 122860
11683 50463 60177 195245
60862 194711 37817 97212
144366 176271 113551 171098
120095 170517 73555 167299
...

output:


result:


Subtask #7:

score: 0
Wrong Answer

Test #37:

score: 0
Wrong Answer
time: 938ms
memory: 510948kb

input:

100000 200000 1
1 22878 1 2
1 7957 3 4
1 21779 5 6
1 34321 7 8
1 41692 9 10
1 49473 11 12
1 10254 13 14
1 43995 15 16
1 46975 17 18
1 668 19 20
1 25996 21 22
1 24975 23 24
1 43259 25 26
1 4174 27 28
1 39330 29 30
1 35462 31 32
1 27523 33 34
1 5574 35 36
1 47955 37 38
1 47013 39 40
1 3846 41 42
1 276...

output:

5890 11779 17668 23557 29446 33967 39628 26385 29683 32981 36279 39577 42875 46173 32131 34273 36415 38557 11021 11601 12181 12761 13341 13921 14501 15081 15661 16241 16821 17401 17981 18561 19141 19721 20301 20881 21461 22041 22621 23201 23781 24361 24941 25521 16921 8005 8179 8353 8527 8701 8875 9...

result:

wrong answer 1st numbers differ - expected: '100000', found: '5890'