QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#667694#9492. 树上简单求和hos_lyric#31 4923ms87088kbC++1415.2kb2024-10-23 02:56:552024-10-23 02:56:55

Judging History

你现在查看的是最新测评结果

  • [2024-10-23 02:56:55]
  • 评测
  • 测评结果:31
  • 用时:4923ms
  • 内存:87088kb
  • [2024-10-23 02:56:55]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")


struct Hld {
  int n, rt;
  // needs to be tree
  // vertex lists
  // modified in build(rt) (parent removed, heavy child first)
  vector<vector<int>> graph;
  vector<int> sz, par, dep;
  int zeit;
  vector<int> dis, fin, sid;
  // head vertex (minimum depth) in heavy path
  vector<int> head;

  Hld() : n(0), rt(-1), zeit(0) {}
  explicit Hld(int n_) : n(n_), rt(-1), graph(n), zeit(0) {}
  void ae(int u, int v) {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    graph[u].push_back(v);
    graph[v].push_back(u);
  }

  void dfsSz(int u) {
    sz[u] = 1;
    for (const int v : graph[u]) {
      auto it = std::find(graph[v].begin(), graph[v].end(), u);
      if (it != graph[v].end()) graph[v].erase(it);
      par[v] = u;
      dep[v] = dep[u] + 1;
      dfsSz(v);
      sz[u] += sz[v];
    }
  }
  void dfsHld(int u) {
    dis[u] = zeit++;
    const int deg = graph[u].size();
    if (deg > 0) {
      int vm = graph[u][0];
      int jm = 0;
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        if (sz[vm] < sz[v]) {
          vm = v;
          jm = j;
        }
      }
      swap(graph[u][0], graph[u][jm]);
      head[vm] = head[u];
      dfsHld(vm);
      for (int j = 1; j < deg; ++j) {
        const int v = graph[u][j];
        head[v] = v;
        dfsHld(v);
      }
    }
    fin[u] = zeit;
  }
  void build(int rt_) {
    assert(0 <= rt_); assert(rt_ < n);
    rt = rt_;
    sz.assign(n, 0);
    par.assign(n, -1);
    dep.assign(n, -1);
    dep[rt] = 0;
    dfsSz(rt);
    zeit = 0;
    dis.assign(n, -1);
    fin.assign(n, -1);
    head.assign(n, -1);
    head[rt] = rt;
    dfsHld(rt);
    assert(zeit == n);
    sid.assign(n, -1);
    for (int u = 0; u < n; ++u) sid[dis[u]] = u;
  }

  friend ostream &operator<<(ostream &os, const Hld &hld) {
    const int maxDep = *max_element(hld.dep.begin(), hld.dep.end());
    vector<string> ss(2 * maxDep + 1);
    int pos = 0, maxPos = 0;
    for (int j = 0; j < hld.n; ++j) {
      const int u = hld.sid[j];
      const int d = hld.dep[u];
      if (hld.head[u] == u) {
        if (j != 0) {
          pos = maxPos + 1;
          ss[2 * d - 1].resize(pos, '-');
          ss[2 * d - 1] += '+';
        }
      } else {
        ss[2 * d - 1].resize(pos, ' ');
        ss[2 * d - 1] += '|';
      }
      ss[2 * d].resize(pos, ' ');
      ss[2 * d] += std::to_string(u);
      if (maxPos < static_cast<int>(ss[2 * d].size())) {
        maxPos = ss[2 * d].size();
      }
    }
    for (int d = 0; d <= 2 * maxDep; ++d) os << ss[d] << '\n';
    return os;
  }

  bool contains(int u, int v) const {
    return (dis[u] <= dis[v] && dis[v] < fin[u]);
  }
  int lca(int u, int v) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    for (; head[u] != head[v]; ) (dis[u] > dis[v]) ? (u = par[head[u]]) : (v = par[head[v]]);
    return (dis[u] > dis[v]) ? v : u;
  }
  int jumpUp(int u, int d) const {
    assert(0 <= u); assert(u < n);
    assert(d >= 0);
    if (dep[u] < d) return -1;
    const int tar = dep[u] - d;
    for (u = head[u]; ; u = head[par[u]]) {
      if (dep[u] <= tar) return sid[dis[u] + (tar - dep[u])];
    }
  }
  int jump(int u, int v, int d) const {
    assert(0 <= u); assert(u < n);
    assert(0 <= v); assert(v < n);
    assert(d >= 0);
    const int l = lca(u, v);
    const int du = dep[u] - dep[l], dv = dep[v] - dep[l];
    if (d <= du) {
      return jumpUp(u, d);
    } else if (d <= du + dv) {
      return jumpUp(v, du + dv - d);
    } else {
      return -1;
    }
  }
  // [u, v) or [u, v]
  template <class F> void doPathUp(int u, int v, bool inclusive, F f) const {
    assert(contains(v, u));
    for (; head[u] != head[v]; u = par[head[u]]) f(dis[head[u]], dis[u] + 1);
    if (inclusive) {
      f(dis[v], dis[u] + 1);
    } else {
      if (v != u) f(dis[v] + 1, dis[u] + 1);
    }
  }
  // not path order, include lca(u, v) or not
  template <class F> void doPath(int u, int v, bool inclusive, F f) const {
    const int l = lca(u, v);
    doPathUp(u, l, false, f);
    doPathUp(v, l, inclusive, f);
  }

  // (vs, ps): compressed tree
  // vs: DFS order (sorted by dis)
  // vs[ps[x]]: the parent of vs[x]
  // ids[vs[x]] = x, not set for non-tree vertex
  vector<int> ids;
  pair<vector<int>, vector<int>> compress(vector<int> us) {
    // O(n) first time
    ids.resize(n, -1);
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    int usLen = us.size();
    assert(usLen >= 1);
    for (int x = 1; x < usLen; ++x) us.push_back(lca(us[x - 1], us[x]));
    std::sort(us.begin(), us.end(), [&](int u, int v) -> bool {
      return (dis[u] < dis[v]);
    });
    us.erase(std::unique(us.begin(), us.end()), us.end());
    usLen = us.size();
    for (int x = 0; x < usLen; ++x) ids[us[x]] = x;
    vector<int> ps(usLen, -1);
    for (int x = 1; x < usLen; ++x) ps[x] = ids[lca(us[x - 1], us[x])];
    return make_pair(us, ps);
  }
};

////////////////////////////////////////////////////////////////////////////////


// T: (commutative) monoid representing information of an interval.
//   T()  should return the identity.
//   T(S s)  should represent a single element of the array.
//   T::push(T &l, T &r)  should push the lazy update.
//   T::pull(const T &l, const T &r)  should pull two intervals.
template <class X, class Y, class T> struct KdTree {
  int n, nn;
  // ((x, y), i): permuted
  using Point = pair<pair<X, Y>, int>;
  vector<Point> ps;
  // leaf for point i
  vector<int> us;
  struct Node {
    T t;
    int l, r;
    X minX, maxX;
    Y minY, maxY;
  };
  vector<Node> nodes;
  KdTree() : n(0), nn(0), ps(), us(), nodes() {}
  void add(X x, Y y) {
    const int i = ps.size();
    ps.emplace_back(std::make_pair(x, y), i);
  }
  void build() {
    n = ps.size();
    assert(n >= 1);
    us.resize(n);
    nodes.resize(2 * n - 1);
    buildRec(0, n, 0);
  }
  int buildRec(int jL, int jR, int dir) {
    const int u = nn++;
    Node &node = nodes[u];
    node.minX = node.maxX = ps[jL].first.first;
    node.minY = node.maxY = ps[jL].first.second;
    if (jL + 1 == jR) {
      us[ps[jL].second] = u;
      node.l = node.r = -1;
    } else {
      for (int j = jL + 1; j < jR; ++j) {
        if (node.minX > ps[j].first.first) node.minX = ps[j].first.first;
        if (node.maxX < ps[j].first.first) node.maxX = ps[j].first.first;
        if (node.minY > ps[j].first.second) node.minY = ps[j].first.second;
        if (node.maxY < ps[j].first.second) node.maxY = ps[j].first.second;
      }
      const int jMid = jL + (jR - jL) / 2;
      if (dir == 0) {
        std::nth_element(ps.begin() + jL, ps.begin() + jMid, ps.begin() + jR,
                         [&](const Point &p0, const Point &p1) -> bool {
                           return (p0.first.first < p1.first.first); 
                         });
      } else {
        std::nth_element(ps.begin() + jL, ps.begin() + jMid, ps.begin() + jR,
                         [&](const Point &p0, const Point &p1) -> bool {
                           return (p0.first.second < p1.first.second);
                         });
      }
      node.l = buildRec(jL, jMid, dir ^ 1);
      node.r = buildRec(jMid, jR, dir ^ 1);
    }
    return u;
  }
  const T &all() const {
    return nodes[0].t;
  }
  T &at(int i) {
    return nodes[us[i]].t;
  }
  void pullAll() {
    for (int u = nn; --u >= 0; ) if (~nodes[u].l) pull(u);
  }

  inline void push(int u) {
    nodes[u].t.push(nodes[nodes[u].l].t, nodes[nodes[u].r].t);
  }
  inline void pull(int u) {
    nodes[u].t.pull(nodes[nodes[u].l].t, nodes[nodes[u].r].t);
  }

  // Applies T::f(args...) to point i.
  template <class F, class... Args>
  void chLeaf(int i, F f, Args &&... args) {
    chLeafRec(0, us[i], f, args...);
  }
  template <class F, class... Args>
  void chLeafRec(int u, int leaf, F f, Args &&... args) {
    Node &node = nodes[u];
    if (u == leaf) {
      (node.t.*f)(args...);
      return;
    }
    push(u);
    chLeafRec((leaf < node.r) ? node.l : node.r, leaf, f, args...);
    pull(u);
  }

  // Calculates the value for point i.
  T getLeaf(int i) {
    return getLeafRec(0, us[i]);
  }
  T getLeafRec(int u, int leaf) {
    Node &node = nodes[u];
    if (u == leaf) {
      return node.t;
    }
    push(u);
    const T t = getLeafRec((leaf < node.r) ? node.l : node.r, leaf);
    pull(u);
    return t;
  }

  // Applies T::f(args...) to points in [xa, xb] * [ya, yb].
  template <class F, class... Args>
  void ch(X xa, X xb, Y ya, Y yb, F f, Args &&... args) {
    chRec(0, xa, xb, ya, yb, f, args...);
  }
  template <class F, class... Args>
  void chRec(int u, X xa, X xb, Y ya, Y yb, F f, Args &&... args) {
    Node &node = nodes[u];
    if (xb < node.minX || node.maxX < xa || yb < node.minY || node.maxY < ya) {
      return;
    }
    if (xa <= node.minX && node.maxX <= xb && ya <= node.minY && node.maxY <= yb) {
      (node.t.*f)(args...);
      return;
    }
    push(u);
    chRec(node.l, xa, xb, ya, yb, f, args...);
    chRec(node.r, xa, xb, ya, yb, f, args...);
    pull(u);
  }

  // Calculates the product for points in [xa, xb] * [ya, yb].
  T get(X xa, X xb, Y ya, Y yb) {
    return getRec(0, xa, xb, ya, yb);
  }
  T getRec(int u, X xa, X xb, Y ya, Y yb) {
    Node &node = nodes[u];
    if (xb < node.minX || node.maxX < xa || yb < node.minY || node.maxY < ya) {
      return T();
    }
    if (xa <= node.minX && node.maxX <= xb && ya <= node.minY && node.maxY <= yb) {
      return node.t;
    }
    push(u);
    const T tL = getRec(node.l, xa, xb, ya, yb);
    const T tR = getRec(node.r, xa, xb, ya, yb);
    pull(u);
    T t;
    t.pull(tL, tR);
    return t;
  }
};

////////////////////////////////////////////////////////////////////////////////


template <class T> struct NodeSum {
  int sz;
  T sum;
  T lz;
  NodeSum() : sz(0), sum(0), lz(0) {}
  NodeSum(const T &val) : sz(1), sum(val), lz(0) {}
  void push(NodeSum &l, NodeSum &r) {
    l.add(lz);
    r.add(lz);
    lz = 0;
  }
  void pull(const NodeSum &l, const NodeSum &r) {
    sz = l.sz + r.sz;
    sum = l.sum + r.sum;
  }
  void add(const T &val) {
    sum += val * sz;
    lz += val;
  }
  T getSum() const {
    return sum;
  }
  bool accSum(T &acc, const T &tar) const {
    if (acc + sum >= tar) return true;
    acc += sum;
    return false;
  }
};


using Mint = unsigned long long;

int N, Q;
vector<Mint> C;
vector<int> A[2], B[2];
vector<int> X, Y;
vector<Mint> K;

Hld hld[2];


namespace subA {
int L, E;
vector<Mint> giant, baby;
Mint get(int u) {
  const int a = hld[0].dis[u];
  return C[u] + giant[a >> E] + baby[a];
}
vector<Mint> run() {
cerr<<"[subA::run]"<<endl;
  for (E = 0; 1 << (2 * E) < N; ++E) {}
  L = N >> E;
  giant.assign(L + 1, 0ULL);
  baby.assign(N, 0ULL);
  vector<Mint> ans(Q, 0);
  for (int q = 0; q < Q; ++q) {
    hld[0].doPath(X[q], Y[q], true, [&](int l, int r) -> void {
      for (int x = l >> E; x < r >> E; ++x) giant[x] += K[q];
      for (int i = l >> E << E; i < l; ++i) baby[i] -= K[q];
      for (int i = r >> E << E; i < r; ++i) baby[i] += K[q];
    });
    {
      int x = X[q], y = Y[q];
      for (; hld[1].dep[x] > hld[1].dep[y]; x = hld[1].par[x]) ans[q] += get(x);
      for (; hld[1].dep[x] < hld[1].dep[y]; y = hld[1].par[y]) ans[q] += get(y);
      for (; x != y; x = hld[1].par[x], y = hld[1].par[y]) ans[q] += get(x) + get(y);
      ans[q] += get(x);
    }
  }
  return ans;
}
}  // subA

namespace subB {
vector<vector<int>> graph[2];
vector<int> D[2];
void dfs(int h, int u, int p, int d) {
  D[h][u] = d;
  for (const int v : graph[h][u]) if (p != v) {
    dfs(h, v, u, d + 1);
  }
}

bool check() {
  for (int h = 0; h < 2; ++h) {
    graph[h].assign(N, {});
    for (int i = 0; i < N - 1; ++i) {
      graph[h][A[h][i]].push_back(B[h][i]);
      graph[h][B[h][i]].push_back(A[h][i]);
    }
    int cnt = 0;
    for (int u = 0; u < N; ++u) if (graph[h][u].size() <= 1) ++cnt;
    if (cnt > 2) return false;
  }
  return true;
}
vector<Mint> run() {
cerr<<"[subB::run]"<<endl;
  for (int h = 0; h < 2; ++h) {
    D[h].assign(N, -1);
    for (int u = 0; u < N; ++u) if (graph[h][u].size() <= 1) {
      dfs(h, u, -1, 0);
      break;
    }
// cerr<<"D["<<h<<"] = "<<D[h]<<endl;
  }
  KdTree<int, int, NodeSum<Mint>> kdt;
  for (int u = 0; u < N; ++u) kdt.add(D[0][u], D[1][u]);
  kdt.build();
  for (int u = 0; u < N; ++u) kdt.at(u) = C[u];
  kdt.pullAll();
  vector<Mint> ans(Q, 0);
  for (int q = 0; q < Q; ++q) {
    {
      int a = D[0][X[q]];
      int b = D[0][Y[q]];
      if (a > b) swap(a, b);
      kdt.ch(a, b, 0, N - 1, &NodeSum<Mint>::add, K[q]);
    }
    {
      int a = D[1][X[q]];
      int b = D[1][Y[q]];
      if (a > b) swap(a, b);
      ans[q] = kdt.get(0, N - 1, a, b).sum;
    }
  }
  return ans;
}
}  // subB


int main() {
  for (; ~scanf("%d%d", &N, &Q); ) {
    C.resize(N);
    for (int u = 0; u < N; ++u) {
      scanf("%llu", &C[u]);
    }
    for (int h = 0; h < 2; ++h) {
      A[h].resize(N - 1);
      B[h].resize(N - 1);
      for (int i = 0; i < N - 1; ++i) {
        scanf("%d%d", &A[h][i], &B[h][i]);
        --A[h][i];
        --B[h][i];
      }
    }
    X.resize(Q);
    Y.resize(Q);
    K.resize(Q);
    for (int q = 0; q < Q; ++q) {
      scanf("%d%d%llu", &X[q], &Y[q], &K[q]);
      --X[q];
      --Y[q];
    }
    
    for (int h = 0; h < 2; ++h) {
      hld[h] = Hld(N);
      for (int i = 0; i < N - 1; ++i) {
        hld[h].ae(A[h][i], B[h][i]);
      }
      hld[h].build(0);
    }
    
    vector<Mint> ans;
    if (subB::check()) {
      ans = subB::run();
    } else {
      ans = subA::run();
    }
    for (int q = 0; q < Q; ++q) {
      printf("%llu\n", ans[q]);
    }
  }
  return 0;
}

詳細信息

Subtask #1:

score: 5
Accepted

Test #1:

score: 5
Accepted
time: 5ms
memory: 4904kb

input:

3000 3000
7236742292501328495 17973811477309806363 16075782662531676171 17971236571771878676 11392080645527132110 3685563455925680459 9773593720088356683 8313828403245053795 7736401634567449043 1634817828009987181 6951124933529719486 12775126714635387213 15460977209223753216 397573676785925632 31372...

output:

12105153858659381124
18367442707572066757
11668241962484097878
11288238120352358472
1742468310074622166
9942835997686093671
3305677510569607477
17741602000425004088
14984128302052618266
1075081718074605786
6509217537832509095
16750513627843273113
8569443169249732820
14475184194298579044
156111071108...

result:

ok 3000 lines

Test #2:

score: 5
Accepted
time: 5ms
memory: 4640kb

input:

3000 3000
1612333876155866602 8538417838700679227 6080765231437578796 17905224638340228394 12270907925903144224 17944105326358594564 17302041033966840611 1006351124625222126 496336153231744288 9393087977687876980 9553975238547373621 9361882717200384390 15051881329169144319 9757999873162420435 882725...

output:

11133131376095771981
7909873024850695144
16250639243139481926
14562550655578101207
8274205996508264973
178549413271904466
2368406276743327913
7464009386554813982
9439464815411774627
1471756740732097060
15201641099137019227
6774030298556871576
18156105511913219667
1553508745644446823
4225137078364117...

result:

ok 3000 lines

Test #3:

score: 5
Accepted
time: 3ms
memory: 4836kb

input:

3000 3000
9709246061666095435 1861649101703072889 10620139893353930613 17635186539135419482 710209455559527146 6075101384669982511 1120305006358459674 9703156967435388252 1397046737759839382 5259056712870179169 8253156305433022999 710199693203327302 15130650033641744675 10720111924616886955 15543351...

output:

7834604406305153073
5037061270969117785
16481572776620825702
15177894197606565804
3120320619896892806
18008650876379132344
7417108723176816402
13515164814425439399
3299769942258542105
15897528270699011770
11642805469843844638
16764682282380318054
4824039114054405772
4859834102876213962
1234210473247...

result:

ok 3000 lines

Test #4:

score: 5
Accepted
time: 4ms
memory: 5084kb

input:

3000 3000
16538965545220923528 18062192327708400751 10422465150728338588 3471522151129113073 1236650672072793692 1942240200040301168 13090729759591037952 15335798523677372669 9912100622761466753 11177948788405690381 3710859061697501523 4984944638666762977 17278589713462878008 6371292801024547050 868...

output:

8182453933067329108
13535217473847106938
17067385337010269798
3806121648880466130
11322569288575153037
11079197311131660121
9670138330007803226
6554062218199796758
965954569567598779
18055887214749050688
6142620503089407421
8690117812667761187
9547139298346295115
8890987597519353054
1755036654049586...

result:

ok 3000 lines

Test #5:

score: 5
Accepted
time: 8ms
memory: 4920kb

input:

3000 3000
17759588706587888497 10550000524636484378 11601004513528075994 7150322911283804521 4459707248078569712 10692395730842402625 8940418793863522991 12967068928670540447 9954278250450015940 13702413838608801301 10598390500439869870 15110245227553613794 490862872212325709 15164980555660957366 94...

output:

9743736929788175512
16812303667256960040
14694223512340829897
550204232580650311
1175342872438242313
17622261358285047637
7413682703975031220
12643066512274062227
1868985217436232595
5471830334855681322
8070132260376389587
3970361922096052085
218281824643752746
991917103472727104
2960248244218479023...

result:

ok 3000 lines

Subtask #2:

score: 12
Accepted

Dependency #1:

100%
Accepted

Test #6:

score: 12
Accepted
time: 0ms
memory: 4056kb

input:

5 7
0 3 2 6 4
1 2
2 4
1 5
5 3
3 4
4 2
2 5
5 1
5 3 0
3 2 5
4 4 4
4 4 3
5 2 0
3 4 3
5 5 6

output:

15
21
10
13
17
26
18

result:

ok 7 lines

Test #7:

score: 12
Accepted
time: 333ms
memory: 22524kb

input:

70000 70000
3805295436278888199 9842309351516174725 1566744796319231180 2206519284152256579 2715928675931950447 6346821976624501261 16020972671480798719 14702021753902144915 17127828773798978442 15779168055669690475 4964561323934614661 9395102787554964450 6377076753365184543 15167378195767668817 288...

output:

5971729064136092190
6457394048987305727
13604212649915736394
8639973959364892219
437861319070967556
16133076880026962355
5384937395694479961
4591478439775690843
16071919565966962790
15485626634068969082
10235993901046758372
3449528613427081475
8064280362779764074
12784984512326434905
424951714880051...

result:

ok 70000 lines

Test #8:

score: 12
Accepted
time: 2991ms
memory: 28096kb

input:

70000 70000
17769190865915081913 3772925482507158804 10559962993069063712 16307277356502651642 12014171661057147061 1923543107882042577 13408785599350410314 17786178374951015816 2038922879833426794 2540043772647346461 15419977514837351390 5175974305273838292 16815288359165841441 6295059675346852046 ...

output:

16215781699519408534
17067966839552063165
1639359200259068228
1157756671621253300
12850966537933214537
13917563606289473282
11146906493479190751
869141055866285398
529460535280965984
11437720548737856517
12321579881011015953
4005153170897692243
10217866116994297464
8892403813874757974
12520505236760...

result:

ok 70000 lines

Test #9:

score: 12
Accepted
time: 2398ms
memory: 28060kb

input:

70000 70000
1322605819855709761 1534349070722535975 3956030287626175223 12996546673549161162 7258680666490714729 15591023033141410544 11626890152249303179 7745771567168540351 5535931029756133379 11840793767439557739 6286106656048048381 9490665709724541446 4561258384162386434 2460318488748442222 1303...

output:

7565012138645637258
1080785033897684285
4000254219257999844
8727142139647715419
1784876728989450460
2474052717732723820
5108017366064709316
5232698473118606856
7893212823648229982
6449010654774296779
16571818815110297674
603759348329356530
7364528294111530037
4667545362378304836
3039728935129459889
...

result:

ok 70000 lines

Test #10:

score: 12
Accepted
time: 4923ms
memory: 24708kb

input:

70000 70000
2918414982140182939 1004760492603077644 7526656799259998488 6665485253854847449 7752199419154649757 12763267823077347079 11745132191692540338 6726116817426709990 15550876907005962464 9760509858122842638 684733892856965421 10077915441058780247 8380400329996723109 16920573433866702239 3069...

output:

8230389499860859172
16425656898047941538
107743004356580170
9778122844868660722
11068387722102791183
13252614309136720348
15937842372230698728
12777338070107774364
17974062134369145560
3740400391792770609
7367804332878038809
14236246024207211797
5659238205278608512
10550373456364765526
3478082332928...

result:

ok 70000 lines

Test #11:

score: 12
Accepted
time: 2768ms
memory: 41468kb

input:

70000 70000
14167059704556856337 16190708842842354431 16763990539754009056 7631426709261583690 16701377874952853623 13128000186728267818 13668914249103068169 11444044591715948726 461080622438520919 15327533341012334586 15905150558482528923 18113008235210277231 18273290154232335325 871461822812191943...

output:

5416890687002400795
15434184693210288436
14994504916760087024
2057026449542829151
14782289435774270062
5375237679514404106
6242405047854012647
13176621545709355733
14860610197328732602
2320525143444929350
4955538191022622551
16072981679771537209
16493487770453132249
7457010288198365370
1095949888193...

result:

ok 70000 lines

Test #12:

score: 12
Accepted
time: 204ms
memory: 24048kb

input:

70000 70000
6512290618577097706 2307104154841663907 18099814251235047570 8297332016606109910 6979819983598849680 18022671181330012408 7003320957516774041 10765303713874539785 15263207007138552812 11713955610641877995 9084887894280210904 3653718255996209121 14197591595561260765 2937670413926210256 43...

output:

5372775214253596890
927985558228810546
3829815088328182672
17496384540548895622
2541458359607440535
9685902106698191409
13649653134779075960
2952563488513208867
3457470079648848247
11542323450217419837
6576344363223624061
12316990756988470568
17923006133291073450
13069551524451668138
648013229980407...

result:

ok 70000 lines

Test #13:

score: 12
Accepted
time: 3048ms
memory: 24048kb

input:

70000 70000
13665984219894847790 9458613748861462697 7467746948118990839 10855454155004540952 10025433108785732161 15816172836312183738 2834129139700401667 221649423184372325 8409217794427284711 16119623676185869010 12488380095384700010 3049877130176336551 5805665682633632307 13224802542929355280 18...

output:

7934210059911784858
14305091721658406168
5803801684631217062
8806866881905382618
14997911434771439753
7006465422324293550
15394754861139766679
8377831978907312075
12227086919743533414
8784212755151945751
17039860679476902214
6474495685436520748
11136139762939837997
16869294577244011226
1164744311638...

result:

ok 70000 lines

Subtask #3:

score: 0
Time Limit Exceeded

Dependency #2:

100%
Accepted

Test #14:

score: 0
Time Limit Exceeded

input:

120000 120000
4056283459929576306 2264755903151268173 1157390036441353969 5734735320959854923 6025999163810189446 3972481234804681969 4746636248696530169 6716674455256322787 6407347371842702902 7463142557880503801 208361219405474896 512530621977574257 6488145455921761864 6595856237657889728 95997703...

output:


result:


Subtask #4:

score: 14
Accepted

Test #21:

score: 14
Accepted
time: 1166ms
memory: 59356kb

input:

200000 200000
622783158027686223 2242697872372232537 8481648430436878777 10092474834140799044 15403999682625301609 12614289513474949582 9180944589267018841 7823784919308285798 8257785171198951273 5134508521895120821 8041682272181381093 3835432206618893170 2653803171409877650 5589823419153460372 1007...

output:

9042998055336671259
11611293489264521142
5835924579879681322
9187084356907537870
17810346410706951073
565636160725988981
837626748701483168
16059573289829807099
7246210357888652619
7725251776483176497
17088098442183693937
9042305714006927228
10907378739216215456
6526772063609981609
51578202456469609...

result:

ok 200000 lines

Test #22:

score: 14
Accepted
time: 1679ms
memory: 61580kb

input:

200000 200000
13175752638648662841 17926176333479943540 18069418271192836667 7662981418770774166 17432280672869071045 9361466030141569604 17336291298429915451 758279154724011577 10229986883918215412 16695796270233481895 1104033984864960726 9768530369533627193 7121962912997584423 8574667967472399164 ...

output:

761007177180158471
99932139211644879
9085452500188024811
10579196290428182519
9823187704909577710
18023302821814112676
12490017484705421441
12628966555486388857
14265121989865566834
6520346880672680237
13101459183526308131
999924043939340162
18263995506773932901
5204528109864295202
12531805215875429...

result:

ok 200000 lines

Test #23:

score: 14
Accepted
time: 1178ms
memory: 87088kb

input:

200000 200000
7686280868723494190 956703982700755675 9999621735507690021 16173863373498393354 13710049849600478540 17103229081434028663 17565545023679367555 2828484246894512005 1583487132574088302 6282276626784421099 11842426946394217784 3255349046251970557 9837219010639574935 8803965402777990679 10...

output:

9027980728293426417
390552393210324231
11163738403290403569
7251051512011369232
11710945043516484177
8385783841330898676
10540689232459717148
13494924758898800208
10783463309429788767
15497109458285729613
3973164643641949159
16591368938886703497
17545967451093599325
7502098747509618204
7748818626114...

result:

ok 200000 lines

Test #24:

score: 14
Accepted
time: 1254ms
memory: 64104kb

input:

200000 200000
3398335727711776744 2517912491303558304 9944108242783740552 11465445588414101188 8918103911029611319 6248803476150904656 13839544089125989886 11613304797643373734 2743278001758631252 5880657146483100262 17520221750013284250 3574310479117269847 17332054826892442501 4186477155186295241 7...

output:

11201243883635739649
5642768912062346910
14237324928813743475
17949858083662777758
7007085524141292752
16431646654432642924
9544485471385114348
17223214017002242047
6358064993672703329
7126356965173878837
10226578739676773239
17581948280120185856
7547085902091221485
2256786006467014785
1348515941789...

result:

ok 200000 lines

Test #25:

score: 14
Accepted
time: 1223ms
memory: 72156kb

input:

200000 200000
16389428600328688123 13285293781493429938 16272776262151288852 2788638121841944928 840590085080737028 472104557233550161 2950757076856426026 884621482021485766 4656207248358869553 4325985129321868698 15439653714414044259 8869605634233383357 2875651646205284961 18315661660942366682 3209...

output:

11670281421082997569
13170194106693978241
4379481616026191349
1374955090149450188
16981223657037354332
15581757479756062245
964815911596550839
14653197660590615612
1244503873454847903
12992317503104122180
8922002840354854569
9883361056075385805
4661992164326801469
5993972796274466263
476463508437351...

result:

ok 200000 lines

Test #26:

score: 14
Accepted
time: 1399ms
memory: 64172kb

input:

200000 200000
8926134977558578929 14277420964906340273 14017501029945049702 16291239250458096854 5699993893720160591 1404316482439341580 6509187990544574711 3321495986616857673 9576515208059172862 16437943937474607467 3444518963957979419 17039197068804123693 9035882298315219046 10231648064038856650 ...

output:

11394865482866208122
4540012560447567167
14181315197904653108
1138165850159307501
4403319165822720694
3554076031362588972
4848001086504005989
17788785233422248859
5278865852900446472
9052657317349052491
7439239802335183804
280124506773607363
4951887064424754895
4442074242463250219
112728736814611771...

result:

ok 200000 lines

Subtask #5:

score: 0
Time Limit Exceeded

Test #27:

score: 0
Time Limit Exceeded

input:

200000 200000
1958469220619413759 14991498002015735322 6054491201406941902 18206143187746582567 15082377615826460430 2936248617457291604 10073577150351675920 16534472678586906457 2207599132486246393 10301540360769075442 1492580560381080472 551692353431379140 13238280352539145808 8462626987240986565 ...

output:


result:


Subtask #6:

score: 0
Time Limit Exceeded

Test #34:

score: 0
Time Limit Exceeded

input:

200000 200000
6794776813641982926 1561596256197101737 10910039723053043515 7892247858295192798 12233819960547881004 17695389034783066733 9173201689566865598 17626618141377486739 7358781671024283919 6787559733384974662 3884392438269280436 14872846228351316833 9037842441501571648 14299818404271084016 ...

output:


result:


Subtask #7:

score: 0
Skipped

Dependency #1:

100%
Accepted

Dependency #2:

100%
Accepted

Dependency #3:

0%